Ding J, Ruan C, Du W, Guan Y. RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp. Bmc Plant Biol. 2019;19(1):207-24.
Article
CAS
Google Scholar
Wang K, Xu Z, Liao X. Bioactive compounds, health benefits and functional food products of sea buckthorn: a review. Crit Rev Food Sci Nutr. 2021:1–22. https://doi.org/10.1080/10408398.2021.1905605.
Hosseinian FS, Li W, Hydamaka AW, Tsopmo A, Lowry L, Friel J, et al. Proanthocyanidin profile and ORAC values of Manitoba berries, chokecherries, and seabuckthorn. J Agric Food Chem. 2007;55(17):6970–6.
Article
CAS
Google Scholar
Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, et al. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci. 2017;18(1):96-127.
Liu S, Xiao P, Kuang Y, Hao J, Huang T, Liu E. Flavonoids from sea buckthorn: A review on phytochemistry, pharmacokinetics and role in metabolic diseases. J Food Biochem. 2021;45(5): e13724.
PubMed
CAS
Google Scholar
Basu M, Prasad R, Jayamurthy P, Pal K, Arumughan C, Sawhney RC. Anti-atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil. Phytomedicine. 2007;14(11):770–7.
Article
CAS
Google Scholar
Mulati A, Ma S, Zhang H, Ren B, Zhao B, Wang L, et al. Sea-buckthorn flavonoids alleviate high-Fat and high-fructose diet-induced cognitive impairment by inhibiting insulin resistance and neuroinflammation. J Agric Food Chem. 2020;68(21):5835–46.
Article
CAS
Google Scholar
Hu R, Yuan B, Wei X, Zhao L, Tang J, Chen D. Enhanced cAMP/PKA pathway by seabuckthorn fatty acids in aged rats. J Ethnopharmacol. 2007;111(2):248–54.
Article
CAS
Google Scholar
Gupta D, Kaul V. Qualitative analysis of bioactive compounds in leaves of Hippophae rhamnoides L. Natl Acad Sci Lett. 2013;36(5):477–81.
Article
CAS
Google Scholar
Morgenstern A, Ekholm A, Scheewe P, Rumpunen K. Changes in content of major phenolic compounds during leaf development of sea buckthorn (Hippophae rhamnoides L.). Agr Food Sci. 2014;23(3):207–19.
Article
Google Scholar
Vashishtha V, Barhwal K, Kumar A, Hota SK, Chaurasia OP, Kumar B. Effect of seabuckthorn seed oil in reducing cardiovascular risk factors: A longitudinal controlled trial on hypertensive subjects. Clin Nutr. 2017;36(5):1231–8.
Article
CAS
Google Scholar
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222-37.
PubMed
PubMed Central
CAS
Google Scholar
Chapman KD, Ohlrogge JB. Compartmentation of triacylglycerol accumulation in plants. J Biol Chem. 2012;287(4):2288–94.
Article
CAS
Google Scholar
Dolkar P, Dolkar D, Angmo S, Kumar B, Stobdan T. Variability in phenolics, flavonoids and antioxidants in Seabuckthorn (Hippophae rhamnoides L.) seed from nine trans-Himalayan natural population. J Berry Res. 2017;7(2):109–16.
Article
CAS
Google Scholar
Criste A, Urcan AC, Bunea A, Pripon Furtuna FR, Olah NK, Madden RH, et al. Phytochemical composition and biological activity of berries and leaves from four romanian sea buckthorn (Hippophae Rhamnoides L.) varieties. Molecules. 2020;25(5):1170-90.
Guo R, Guo X, Li T, Fu X, Liu RH. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophae rhamnoides L.) berries. Food Chem. 2017;221:997–1003.
Article
CAS
Google Scholar
Fatima T, Kesari V, Watt I, Wishart D, Todd JF, Schroeder WR, et al. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.). Phytochemistry. 2015;118:181–91.
Article
CAS
Google Scholar
Ding J, Wang L, Ruan CJ. Comparative transcriptome analysis of lipid biosynthesis in seeds and non-seed tissues of sea buckthorn. Genes Genom. 2017;39(9):1021–33.
Article
CAS
Google Scholar
Xing S, Poirier Y. The protein acetylome and the regulation of metabolism. Trends Plant Sci. 2012;17(7):423–30.
Article
CAS
Google Scholar
Boersema PJ, Kahraman A, Picotti P. Proteomics beyond large-scale protein expression analysis. Curr Opin Biotechnol. 2015;34:162–70.
Article
CAS
Google Scholar
Coombs KM. Quantitative proteomics of complex mixtures. Expert Rev Proteomic. 2011;8(5):659–77.
Article
CAS
Google Scholar
Du W, Xiong CW, Ding J, Nybom H, Ruan CJ, Guo H. Tandem mass tag based quantitative proteomics of developing sea buckthorn berries reveals candidate proteins related to lipid metabolism. J Proteome Res. 2019;18(5):1958–69.
Article
CAS
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51.
Article
CAS
Google Scholar
Deng YX, Lu SF. Biosynthesis and regulation of phenylpropanoids in plants. Crit Rev Plant Sci. 2017;36(4):257–90.
Article
Google Scholar
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, et al. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem. 2013;72:21–34.
Article
CAS
Google Scholar
Jiang JJ, Zhu S, Yuan Y, Wang Y, Zeng L, Batley J, et al. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. BMC Plant Biol. 2019;19(1):203-16.
Pollak PE, Vogt T, Mo Y, Taylor LP. Chalcone synthase and flavonol accumulation in stigmas and snthers of Petunia hybrida. Plant Physiol. 1993;102(3):925–32.
Article
CAS
Google Scholar
Park NI, Li X, Thwe AA, Lee SY, Kim SG, Wu Q, et al. Enhancement of rutin in Fagopyrum esculentum hairy root cultures by the Arabidopsis transcription factor AtMYB12. Biotechnol Lett. 2012;34(3):577–83.
Article
CAS
Google Scholar
Li X, Kim YB, Kim Y, Zhao S, Kim HH, Chung E, et al. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat. J Plant Physiol. 2013;170(18):1630–6.
Article
CAS
Google Scholar
Himi E, Taketa S. Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy. Genome. 2015;58(1):43–53.
Article
CAS
Google Scholar
Fei XT, Ma Y, Hu HC, Wei AZ. Transcriptome analysis and GC-MS profiling of key genes in fatty acid synthesis of Zanthoxylum bungeanum seeds. Ind Crop Prod. 2020;156-65.
Keereetaweep J, Liu H, Zhai Z, Shanklin J. Biotin attachment domain-containing proteins irreversibly inhibit acetyl CoA carboxylase. Plant Physiol. 2018;177(1):208–15.
Article
CAS
Google Scholar
Li J, Li MR, Wu PZ, Tian CE, Jiang HW, Wu GJ. Molecular cloning and expression analysis of a gene encoding a putative beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III) from Jatropha curcas. Tree Physiol. 2008;28(6):921–7.
Article
CAS
Google Scholar
Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem. 2004;68(6):1175–84.
Article
CAS
Google Scholar
Takami T, Shibata M, Kobayashi Y, Shikanai T. De novo biosynthesis of fatty acids plays critical roles in the response of the photosynthetic machinery to low temperature in Arabidopsis. Plant Cell Physiol. 2010;51(8):1265–75.
Article
CAS
Google Scholar
Meng JS, Tang YH, Sun J, Zhao DQ, Zhang KL, Tao J. Identification of genes associated with the biosynthesis of unsaturated fatty acid and oil accumulation in herbaceous peony “Hangshao” (Paeonia lactiflora ’Hangshao’) seeds based on transcriptome analysis. BMC Genomics. 2021;22(1):94.
Article
CAS
Google Scholar
Garrett TA, Moncada RM. The Arabidopsis thaliana lysophospholipid acyltransferase At1g78690p acylates a variety of lysophospholipids including bis (monoacylglycero) phosphate. Biochem Biophys Res Commun. 2014;452(4):1022–7.
Article
CAS
Google Scholar
Misra A, Khan K, Niranjan A, Kumar V, Sane VA. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana. Plant Sci. 2017;263:79–88.
Article
CAS
Google Scholar
Kwiatek JM, Han GS, Carman GM. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Bba-Mol Cell Biol L. 2020;1865(1):158434-44.
Carman GM, Han GS. Fat-regulating phosphatidic acid phosphatase: a review of its roles and regulation in lipid homeostasis. J Lipid Res. 2019;60(1):2–6.
Article
CAS
Google Scholar
Singh A, Bhatnagar N, Pandey A, Pandey GK. Plant phospholipase C family: Regulation and functional role in lipid signaling. Cell Calcium. 2015;58(2):139–46.
Article
CAS
Google Scholar
Huang J, Zhang T, Zhang Q, Chen M, Wang Z, Zheng B, et al. The mechanism of high contents of oil and oleic acid revealed by transcriptomic and lipidomic analysis during embryogenesis in Carya cathayensis Sarg. BMC Genomics. 2016;17:113-30.
Article
CAS
Google Scholar
Huang CY, Chen PY, Huang MD, Tsou CH, Jane WN, Huang AH. Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor. Proc Natl Acad Sci USA. 2013;110(35):14480–5.
Article
Google Scholar
Shimada TL, Shimada T, Takahashi H, Fukao Y, Hara-Nishimura I. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J. 2008;55(5):798–809.
Article
CAS
Google Scholar
Ruan D, Bao CJ, Guan YH, et al. Analysis of genetic relationships in sea buckthorn (Hippophae rhamnoides) germplasm from China and other countries using ISSR markers. J Hortic Sci Biotech. 2015;90:599–606.
Article
Google Scholar
Yang B, Kallio HP. Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L) berries of different origins. J Agric Food Chem. 2001;49(4):1939–47.
Article
CAS
Google Scholar