Burger M, Jackson LE: Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry. 2003, 35: 29-36. 10.1016/S0038-0717(02)00233-X.
Article
CAS
Google Scholar
Booth MS, Stark JM, Rastetter E: Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecological Monographs. 2005, 75: 139-157. 10.1890/04-0988.
Article
Google Scholar
Schimel JP, Bennett J: Nitrogen mineralization: Challenges of a changing paradigm. Ecology. 2004, 85: 591-602. 10.1890/03-8002.
Article
Google Scholar
Hodge A: The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist. 2004, 162: 9-24. 10.1111/j.1469-8137.2004.01015.x.
Article
Google Scholar
Granato TC, Raper CD: Proliferation of maize (Zea mays L) roots in response to localized supply of nitrate. Journal of Experimental Botany. 1989, 40: 263-75. 10.1093/jxb/40.2.263.
Article
PubMed
CAS
Google Scholar
Garnett T, Conn V, Kaiser BN: Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell and Environment. 2009, 32: 1272-1283. 10.1111/j.1365-3040.2009.02011.x.
Article
PubMed
CAS
Google Scholar
Tibbett M: Roots foraging and the exploration of soil nutrient patches: the role of the mycorrhizal symbiosis. Functional Ecology. 2000, 14: 397-99. 10.1046/j.1365-2435.2000.00417.x.
Article
Google Scholar
Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM: Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant and Soil. 2006, 282: 209-225. 10.1007/s11104-005-5847-7.
Article
CAS
Google Scholar
Lea PJ, Azevedo RA: Nitrogen use efficiency. 1. Uptake of nitrogen from the soil. Annals of Applied Biology. 2006, 149: 243-247. 10.1111/j.1744-7348.2006.00101.x.
Article
CAS
Google Scholar
Lea PJ, Azevedo RA: Nitrogen use efficiency. 2. Amino acid metabolism. Annals of Applied Biology. 2007, 151: 269-275. 10.1111/j.1744-7348.2007.00200.x.
Article
CAS
Google Scholar
Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, et al: The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany. 2002, 53: 855-864. 10.1093/jexbot/53.370.855.
Article
PubMed
CAS
Google Scholar
Loqué D, von Wirén N: Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany. 2004, 55: 1293-1305. 10.1093/jxb/erh147.
Article
PubMed
Google Scholar
Glass ADM: Nitrate uptake by plant roots. Botany. 2009, 87: 659-667. 10.1139/B09-014.
Article
CAS
Google Scholar
Ludewig U, Neuhäuser B, Dynowski M: Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Letters. 2007, 581: 2301-2308. 10.1016/j.febslet.2007.03.034.
Article
PubMed
CAS
Google Scholar
Howitt SM, Udvardi MK: Structure, function and regulation of ammonium transporters in plants. Biochimica Et Biophysica Acta. 2000, 1465: 152-170. 10.1016/S0005-2736(00)00136-X.
Article
PubMed
CAS
Google Scholar
Miller AJ, Cramer MD: Root nitrogen acquisition and assimilation. Plant and Soil. 2005, 274: 1-36. 10.1007/s11104-004-0965-1.
Article
CAS
Google Scholar
Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK: Nitrate transporters and peptide transporters. FEBS Letters. 2007, 581: 2290-2300. 10.1016/j.febslet.2007.04.047.
Article
PubMed
CAS
Google Scholar
Loqué D, von Wirén N: Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany. 2004, 55: 1293-1305. 10.1093/jxb/erh147.
Article
PubMed
Google Scholar
Wang YH, Garvin DF, Kochian LV: Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology. 2001, 127: 345-359. 10.1104/pp.127.1.345.
Article
PubMed
CAS
PubMed Central
Google Scholar
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M: Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology. 2004, 136: 2483-2499. 10.1104/pp.104.047019.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang YH, Okamota M, Xing X, Crawford NM: Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiology. 2003, 132: 556-567. 10.1104/pp.103.021253.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lopes MS, Araus JL: Comparative genomic and physiological analysis of nutrient response to NH4+, NH4+:NO3- and NO3- in barley seedlings. Physiologia Plantarum. 2008, 134: 134-150. 10.1111/j.1399-3054.2008.01114.x.
Article
PubMed
CAS
Google Scholar
Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M: The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant Journal. 2005, 42: 236-250. 10.1111/j.1365-313X.2005.02364.x.
Article
PubMed
CAS
Google Scholar
Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A: Functional characterization of LePT4: A phosphate transporter in tomato with mycorrhiza-enhanced expression. Journal of Experimental Botany. 2007, 58: 2491-2501. 10.1093/jxb/erm096.
Article
PubMed
CAS
Google Scholar
Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M: Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist. 2009, 181: 950-959. 10.1111/j.1469-8137.2008.02721.x.
Article
PubMed
CAS
Google Scholar
Javot H, Pumplin N, Harrison MJ: Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulator roles. Plant Cell and Environment. 2007, 30: 310-322. 10.1111/j.1365-3040.2006.01617.x.
Article
CAS
Google Scholar
Burger M, Jackson LE, Lundquist EJ, Louie DT, Miller RL, Rolston DE, Scow KM: Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes. Biology and Fertility of Soils. 2005, 42: 109-118. 10.1007/s00374-005-0007-z.
Article
CAS
Google Scholar
Fageria NK, Baligar VC: Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy. 2005, 88: 97-185. full_text.
Article
CAS
Google Scholar
Hutchings MJ, de Kroon H: Foraging in plants: The role of morphological plasticity in resource acquisition. Advances in Ecological Research. 1994, 25: 159-238. full_text.
Article
Google Scholar
Hodge A, Robinson D, Griffiths BS, Fitter AH: Why plants bother: Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell and Environment. 1999, 22: 811-820. 10.1046/j.1365-3040.1999.00454.x.
Article
Google Scholar
Richardson AE, Barea JM, McNeill AM, Prignet-Combaret C: Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 2009, 321: 305-339. 10.1007/s11104-009-9895-2.
Article
CAS
Google Scholar
Jovanovic M, Lefebvre V, Laporte P, Gonzalez-Rizzo S, Lelandais-Brière C, Frugier F, Hartmann C, Crespi M: How the environment regulates root architecture in dicots. Advances in Botanical Research. 2007, 46: 35-74. full_text.
Article
Google Scholar
Vidal EA, Gutiérrez RA: A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Current Opinion in Plant Biology. 2008, 11: 521-529. 10.1016/j.pbi.2008.07.003.
Article
PubMed
CAS
Google Scholar
Meshi T, Taoka KI, Iwabuchi M: Regulation of histone gene expression during the cell cycle. Plant Molecular Biology. 2000, 43: 643-657. 10.1023/A:1006421821964.
Article
PubMed
CAS
Google Scholar
Shaw P, Dolan L: Chromatin and Arabidopsis root development. Seminars in Cell and Developmental Biology. 2008, 19: 580-585. 10.1016/j.semcdb.2008.09.001.
Article
PubMed
CAS
Google Scholar
Menges M, Hennig L, Gruissem W, Murray JAH: Cell cycle-regulated gene expression in Arabidopsis. Journal of Biological Chemistry. 2002, 277: 41987-42002. 10.1074/jbc.M207570200.
Article
PubMed
CAS
Google Scholar
Inze D, De Veylder L: Cell cycle regulation in plant development. Annual Review of Genetics. 2006, 40: 77-105. 10.1146/annurev.genet.40.110405.090431.
Article
PubMed
CAS
Google Scholar
Zhong R, Ye ZH: Regulation of cell wall biosynthesis. Current Opinion in Plant Biology. 2007, 10: 564-572. 10.1016/j.pbi.2007.09.001.
Article
PubMed
CAS
Google Scholar
Liu J, Han L, Chen F, Bao J, Zhang F, Mi G: Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.). Plant Science. 2008, 175: 272-282. 10.1016/j.plantsci.2008.04.009.
Article
CAS
Google Scholar
Schachtman DP, Shin R: Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology. 2007, 58: 47-69. 10.1146/annurev.arplant.58.032806.103750.
Article
PubMed
CAS
Google Scholar
Bi YM, Wang RL, Zhu T, Rothstein SJ: Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics. 2007, 8: 281-10.1186/1471-2164-8-281.
Article
PubMed
PubMed Central
Google Scholar
Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q: Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Molecular Biology. 2006, 60: 617-631. 10.1007/s11103-005-5441-7.
Article
PubMed
CAS
Google Scholar
Lauter FR, Ninnemann O, Bucher M, Riesmeier JW, Frommer WB: Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. PNAS. 1996, 93: 8139-8144. 10.1073/pnas.93.15.8139.
Article
PubMed
CAS
PubMed Central
Google Scholar
von Wirén N, Lauter FR, Ninnemann O, Gillissen B, Walch-Liu P, Engels C, Jost W, Frommer WB: Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. The Plant Journal. 2000, 21: 167-175. 10.1046/j.1365-313x.2000.00665.x.
Article
PubMed
Google Scholar
Loqué D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, von Wirén N: Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant Journal. 2006, 48: 522-534. 10.1111/j.1365-313X.2006.02887.x.
Article
PubMed
Google Scholar
Forde BG, Walch-Liu P: Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant, Cell and Environment. 2009, 32: 682-693. 10.1111/j.1365-3040.2008.01927.x.
Article
PubMed
CAS
Google Scholar
Zhang H, Forde BG: An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science. 1998, 279: 407-409. 10.1126/science.279.5349.407.
Article
PubMed
CAS
Google Scholar
Gan Y, Filleur S, Rahman A, Gotensparre S, Forde BG: Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta. 2005, 22: 730-742. 10.1007/s00425-005-0020-3.
Article
Google Scholar
Maynard DN, Hochmuth GJ: Handbook for Vegetable Growers. 1997, New York: John Wiley and Sons, Inc
Google Scholar
Zhu GH, Zhuang CX, Wang YQ, Jiang LR, Peng XX: Differential expression of rice genes under different nitrogen forms and their relationship with sulfur metabolism. Journal of Integrative Plant Biology. 2006, 48: 1177-1184. 10.1111/j.1744-7909.2006.00332.x.
Article
CAS
Google Scholar
Armengaud P, Breitling R, Amtmann A: The potassium-dependant transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiology. 2004, 136: 2556-2576. 10.1104/pp.104.046482.
Article
PubMed
CAS
PubMed Central
Google Scholar
Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y: Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiology. 2009, 150: 772-785. 10.1104/pp.108.133629.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gniazdowska A, Krawczak A, Mikulska M, Rychter AM: Low phosphate nutrition alters bean plants' ability to assimilate and translocate nitrate. Journal of Plant Nutrition. 1999, 22: 551-563. 10.1080/01904169909365651.
Article
CAS
Google Scholar
de Groot CC, Marcelis LFM, va den Boogaard R, Kaiser WM, Lambers H: Interaction of nitrogen and phosphorus nutrition in determining growth. Plant and Soil. 2003, 248: 257-268. 10.1023/A:1022323215010.
Article
CAS
Google Scholar
Olsson PA, Burleigh SH, va Aarle IM: The influence of external nitrogen on carbon allocation to Glomus intraradicies in monoexinc arbuscular mycorrhiza. New Phytologist. 2005, 168: 677-686. 10.1111/j.1469-8137.2005.01532.x.
Article
PubMed
CAS
Google Scholar
Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG: Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology. 1998, 116: 91-99. 10.1104/pp.116.1.91.
Article
PubMed
CAS
PubMed Central
Google Scholar
Poulsen KH, Nagy R, Gao LL, Smith SE, Bucher M, Smith FA, Jakobsen I: Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytologist. 2005, 168: 445-454. 10.1111/j.1469-8137.2005.01523.x.
Article
PubMed
CAS
Google Scholar
Nagy R, Vasconcelos MJV, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M: Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biology. 2006, 8: 186-197. 10.1055/s-2005-873052.
Article
PubMed
CAS
Google Scholar
Liu C, Muchhal US, Raghothama KG: Differential expression of TPS11, a phosphate staration-induced gene in tomato. Plant Molecular Biology. 1997, 33: 867-874. 10.1023/A:1005729309569.
Article
PubMed
CAS
Google Scholar
Barker SJ, Stummer B, Gao L, Dispain I, O'Connor PJ, Smith SE: A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: Isolation and preliminary characterisation. Plant Journal. 1998, 15: 791-797. 10.1046/j.1365-313X.1998.00252.x.
Article
CAS
Google Scholar
Miranda KM, Espey MG, Wink DA: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide - Biology and Chemistry. 2001, 5: 62-71. 10.1006/niox.2000.0319.
Article
CAS
Google Scholar
Foster JC: Soil nitrogen. Methods in applied soil microbiology and biochemistry. San Diego: Academic Press, 1995, 79-87.
Google Scholar
McGonigle TP, Miller MH, Evans DG, Fairchid GL, Swan JA: A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist. 1990, 115: 495-501. 10.1111/j.1469-8137.1990.tb00476.x.
Article
Google Scholar
Sah RN, Miller RO: Spontaneous reaction for acid dissolution of biological tissues in closed vessels. Analytical Chemistry. 1992, 64: 230-233. 10.1021/ac00026a026.
Article
PubMed
CAS
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B. 1995, 57: 289-300.
Google Scholar
Verhoeven KJF, Simonsen KL, McIntyre LM: Implementing false discovery rate control: Increasing your power. Oikos. 2005, 108: 643-647. 10.1111/j.0030-1299.2005.13727.x.
Article
Google Scholar
Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirske W, Van Staveren M, Stiekema W, et al: Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998, 391: 485-488. 10.1038/35140.
Article
PubMed
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. Journal of Molecular Biology. 1990, 215: 403-410.
Article
PubMed
CAS
Google Scholar
Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research. 2001, 29: 10.1093/nar/29.9.e45.
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
PubMed
CAS
Google Scholar