Bansal KC, Lenka SK, Mondal TK. Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breeding. 2014;133:1–11.
Article
CAS
Google Scholar
Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24:23–58.
Article
CAS
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57:781–803.
Article
CAS
PubMed
Google Scholar
Robert-Seilaniantz A, Navarro L, Bari R, Jones JD. Pathological hormone imbalances. Curr Opin Plant Biol. 2007;10:372–9.
Article
CAS
PubMed
Google Scholar
Lee SC, Luan S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 2012;35:53–60.
Article
CAS
PubMed
Google Scholar
Sah SK, Reddy KR, Li JX. Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci. 2016;7:571.
Article
PubMed
PubMed Central
Google Scholar
Dong T, Park Y, Hwang I. Abscisic acid: biosynthesis, inactivation, homoeostasis and signaling. Essays Biochem. 2015;58:29–48.
Article
PubMed
Google Scholar
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: Emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79.
Article
CAS
PubMed
Google Scholar
Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Gene Dev. 2010;24:1695–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 2019;62:25–54.
Article
CAS
Google Scholar
Brookbank BP, Patel J, Gazzarrini S, Nambara E. Role of basal ABA in plant growth and development. Genes. 2021;12:1936.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 2003;132:666–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, et al. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics. 2008;9:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324:1068–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saha J, Chatterjee C, Sengupta A, Gupta K, Gupta B. Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza. Comput Biol Chem. 2014;49:59–70.
Article
CAS
PubMed
Google Scholar
Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, et al. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep. 2008;27:1861–8.
Article
CAS
PubMed
Google Scholar
Wei K, Pan S. Maize protein phosphatase gene family: identification and molecular characterization. BMC Genomics. 2014;15:773.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan W, Zhao M, Li S, Bai X, Li J, Meng H, et al. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol. 2016;16:99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun L, Wang YP, Chen P, Ren J, Ji K, Li Q, et al. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot. 2011;62:5659–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boneh U, Biton I, Schwartz A, Ben-Ari G. Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci. 2012;187:89–96.
Article
CAS
PubMed
Google Scholar
Zhang R, Wang Y, Li S, Yang L, Liang Z. ABA signaling pathway genes and function during abiotic stress and berry ripening in Vitis vinifera. Gene. 2021;769: 145226.
Article
CAS
PubMed
Google Scholar
Gomez-Cadenas A, Vives V, Zandalinas SI, Manzi M, SanchezPerez AM, Perez-Clemente RM, et al. Abscisic acid: a versatile phytohormone in plant signaling and beyond. Cur Protein Pept Sci. 2015;16:413–34.
Article
CAS
Google Scholar
Ruiz-Partida R, Rosario SM, Lozano-Juste J. An update on crop ABA receptors. Plants. 2021;10:1087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Zhu J, Gong Z, Zhu JK. Abiotic stress responses in plants. Nat Rev Genet. 2022;23:104–19.
Article
PubMed
CAS
Google Scholar
Zhao Y, Chan Z, Xing L, Liu X, Hou YJ, Chinnusamy V, et al. The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell Res. 2013;23:1380–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi H, Ye T, Zhu JK, Chan Z. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J Exp Bot. 2014;65:4119–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, et al. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA. 2016;113:1949–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Kong X, Yu Q, Ding Y, Li X, Yang Y. Responses of PYR/PYL/RCAR ABA receptors to contrasting stresses, heat and cold in Arabidopsis. Plant Signal Behav. 2019;14:1670596.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lenka SK, Muthusamy SK, Chinnusamy V, Bansal KC. Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Mol Biotechnol. 2018;60:350–61.
Article
CAS
PubMed
Google Scholar
Verma RK, Santosh-Kumar VV, Yadav SK, Pushkar S, Rao MV, Chinnusamy V. Overexpression of ABA receptor PYL10 gene confers drought and cold tolerance to indica rice. Front Plant Sci. 2019;10:1488.
Article
PubMed
PubMed Central
Google Scholar
Li G, Xin H, Zheng XF, Li S, Hu Z. Identification of the abscisic acid receptor VvPYL1 in Vitis vinifera. Plant Biol. 2012;14:244–8.
CAS
PubMed
Google Scholar
Boneh U, Biton I, Zheng C, Schwartz A, Ben-Ari G. Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Rep. 2012;31:311–21.
Article
CAS
PubMed
Google Scholar
Ren C, Li H, Wang Z, Dai Z, Lecourieux F, Kuang Y, et al. Characterization of chromatin accessibility and gene expression upon cold stress reveals the transcription factor RAV1 functions in cold response in Vitis amurensis. Plant Cell Physiol. 2021;62:1615–29.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 2006;1:641–6.
Article
CAS
PubMed
Google Scholar
Mills LJ, Ferguson JC, Keller M. Cold-hardiness evaluation of grapevine buds and cane tissues. Am J Enol Viticult. 2006;57:194–200.
Google Scholar
Sun X, Matus JT, Wong DCJ, Wang Z, Chai F, Zhang L, et al. The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promoters the accumulation of raffinose family oligosaccharides. J Exp Bot. 2018;69:1749–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang L, Su L, Sun X, Li X, Sun M, Karungo SK, et al. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot. 2016;67:2829–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 2003;133:1755–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christmann A, Weiler EW, Steudle E, Grill E. A hydraulic signal in root-to-shoot signalling of water shortage. Plant J. 2007;52:167–74.
Article
CAS
PubMed
Google Scholar
Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, et al. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 2008;147:1984–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parihar P, Singh S, Singh R, Singh VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res Int. 2015;22:4056–75.
Article
CAS
PubMed
Google Scholar
Ullah A, Sun H, Yang XY, Zhang XL. Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J. 2017;15:271–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Kang JY, Cho DI, Park JH, Kim SY. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 2004;40:75–87.
Article
CAS
PubMed
Google Scholar
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell. 2005;17:3470–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 2010;61:672–85.
Article
CAS
PubMed
Google Scholar
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. 2011;124:509–25.
Article
CAS
PubMed
Google Scholar
Luo X, Li C, He X, Zhang X, Zhu L. ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Rep. 2020;39:181–94.
Article
CAS
PubMed
Google Scholar
Mega R, Abe F, Kim JS, Tsuboi Y, Tanaka K, Kobayashi H, et al. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat Plants. 2019;5:153–9.
Article
CAS
PubMed
Google Scholar
Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell. 2001;13:2063–83.
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, Wu Q, et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat Plants. 2021;7:287–94.
Article
CAS
PubMed
Google Scholar
Song X, Meng X, Guo H, Cheng Q, Jing Y, Chen M, et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat Biotechnol. 2022. https://doi.org/10.1038/s41587-022-01281-7.
Article
PubMed
Google Scholar
Zhang D, Hussain A, Manghwar H, Xie K, Xie S, Zhao S, et al. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J. 2020;18:1651–69.
Article
PubMed
PubMed Central
Google Scholar
Zhao T, Wang Z, Su L, Sun X, Cheng J, Zhang L, et al. An efficient method for transgenic callus induction from Vitis amurensis petiole. PLoS ONE. 2017;12: e0179730.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ren C, Liu Y, Guo Y, Duan W, Fan P, Li S, et al. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Hortic Res. 2021;8:52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L). Sci Rep. 2016;6:32289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren C, Zhang Z, Wang Y, Li S, Liang Z. Genome-wide identification and characterization of the NF-Y gene family in grape (Vitis vinifera L.). BMC Genomics. 2016;17:605.
Article
PubMed
PubMed Central
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Li H, Ding Y, Shi Y, Zhang X, Zhang S, Gong Z, et al. MPK3-and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Dev Cell. 2017;43:630–42.
Article
CAS
PubMed
Google Scholar