Archibald JM. Endosymbiosis and eukaryotic cell evolution. Curr Biol. 2015;25(19):R911–R21.
Article
CAS
PubMed
Google Scholar
Morley SA, Nielsen BL. Plant mitochondrial DNA. Front Biosci-Landmrk. 2017;22:1023–32.
Article
CAS
Google Scholar
Hadariova L, Vesteg M, Hampl V, Krajcovic J. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet. 2018;64(2):365–87.
Article
CAS
PubMed
Google Scholar
Cupp JD, Nielsen BL. Minireview: DNA replication in plant mitochondria. Mitochondrion. 2014;19:231–7.
Article
CAS
PubMed
Google Scholar
Oldenburg DJ, Bendich AJ. DNA maintenance in plastids and mitochondria of plants. Front Plant Sci. 2015;6.
Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A. The plant mitochondrial genome: dynamics and maintenance. Biochimie. 2014;100:107–20.
Article
CAS
PubMed
Google Scholar
Korhonen JA, Pham XH, Pellegrini M, Falkenberg M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 2004;23(12):2423–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SJ, Richardson CC. Choreography of bacteriophage T7 DNA replication. Curr Opin Chem Biol. 2011;15(5):580–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria (vol 28, pg 223, 2001). Nat Genet. 2001;29(1):100-.
Korhonen JA, Gaspari M, Falkenberg M. TWINKLE has 5 '-> 3 ' DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem. 2003;278(49):48627–32.
Article
CAS
PubMed
Google Scholar
Diray-Arce J, Liu B, Cupp JD, Hunt T, Nielsen BL. The Arabidopsis At1g30680 gene encodes a homologue to the phage T7 gp4 protein that has both DNA primase and DNA helicase activities. BMC Plant Biol. 2013;13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peralta-Castro A, Baruch-Torres N, Brieba LG. Plant organellar DNA primase-helicase synthesizes RNA primers for organellar DNA polymerases using a unique recognition sequence. Nucleic Acids Res. 2017;45(18):10764–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struc Biol. 2001;11(1):39–46.
Article
CAS
Google Scholar
Kulczyk AW, Richardson CC. Molecular interactions in the priming complex of bacteriophage T7. P Natl Acad Sci USA. 2012;109(24):9408–13.
Article
CAS
Google Scholar
Shutt TE, Gray MW. Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J Mol Evol. 2006;62(5):588–99.
Article
CAS
PubMed
Google Scholar
Roy S, Choudhury SR, Singh SK, Das KP. AtPol lambda, a homolog of mammalian DNA polymerase lambda in Arabidopsis thaliana, is involved in the repair of UV-B induced DNA damage through the dark repair pathway. Plant Cell Physiol. 2011;52(2):448–67.
Article
CAS
PubMed
Google Scholar
Parent JS, Lepage E, Brisson N. Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis. Plant Physiol. 2011;156(1):254–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moriyama T, Terasawa K, Sato N. Conservation of POPs, the plant Organellar DNA polymerases, in eukaryotes. Protist. 2011;162(1):177–87.
Article
CAS
PubMed
Google Scholar
Baruch-Torres N, Brieba LG. Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases. Nucleic Acids Res. 2017;45(18):10751–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayala-Garcia VM, Baruch-Torres N, Garcia-Medel PL, Brieba LG. Plant organellar DNA polymerases paralogs exhibit dissimilar nucleotide incorporation fidelity. FEBS J. 2018;285(21):4005–18.
Article
CAS
PubMed
Google Scholar
Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. P Natl Acad Sci USA. 2011;108(49):E1293–E301.
Article
CAS
Google Scholar
Hamdan SM, Johnson DE, Tanner NA, Lee JB, Qimron U, Tabor S, et al. Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement. Mol Cell. 2007;27(4):539–49.
Article
CAS
PubMed
Google Scholar
Zhang HD, Lee SJ, Zhu B, Tran NQ, Tabor S, Richardson CC. Helicase-DNA polymerase interaction is critical to initiate leading-strand DNA synthesis. P Natl Acad Sci USA. 2011;108(23):9372–7.
Article
CAS
Google Scholar
Kulczyk AW, Akabayov B, Lee SJ, Bostina M, Berkowitz SA, Richardson CC. An interaction between DNA polymerase and helicase is essential for the high processivity of the bacteriophage T7 replisome. J Biol Chem. 2012;287(46):39050–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang HD, Tang Y, Lee SJ, Wei ZL, Cao J, Richardson CC. Binding affinities among DNA helicase-primase, DNA polymerase, and replication intermediates in the replisome of bacteriophage T7. J Biol Chem. 2016;291(3):1472–80.
Article
CAS
PubMed
Google Scholar
Rannou O, Le Chatelier E, Larson MA, Nouri H, Dalmais B, Laughton C, et al. Functional interplay of DnaE polymerase, DnaG primase and DnaC helicase within a ternary complex, and primase to polymerase hand-off during lagging strand DNA replication in Bacillus subtilis. Nucleic Acids Res. 2013;41(10):5303–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braun KA, Lao Y, He ZG, Ingles CJ, Wold MS. Role of protein-protein interactions in the function of replication protein a (RPA): RPA modulates the activity of DNA polymerase a by multiple mechanisms. Biochemistry-Us. 1997;36(28):8443–54.
Article
CAS
Google Scholar
De A, Campbell C. A novel interaction between DNA ligase III and DNA polymerase gamma plays an essential role in mitochondrial DNA stability. Biochem J. 2007;402:175–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benkovic SJ, Valentine AM, Salinas F. Replisome-mediated DNA replication. Annu Rev Biochem. 2001;70:181–208.
Article
CAS
PubMed
Google Scholar
Yao N, Bacterial O’DM, Machines ER. JSM biochemistry and molecular biology. 2016;3(1):1013.
PubMed
PubMed Central
Google Scholar
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000;408(6814):816–20.
Article
PubMed
Google Scholar
Salanoubat M, Lemcke K, Rieger M, Ansorge W, Unseld M, Fartmann B, et al. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature. 2000;408(6814):820–2.
Article
CAS
PubMed
Google Scholar
Green PJ. The ribonucleases of higher-plants. Annu Rev Plant Phys. 1994;45:421–45.
Article
CAS
Google Scholar
Moriyama T, Sato N. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes. Front Plant Sci. 2014;5.
Eun H-M. 6 - DNA polymerases. In: Eun H-M, editor. Enzymology primer for recombinant DNA technology. San Diego: Academic Press; 1996. p. 345–489.
Chapter
Google Scholar
Bedford E, Tabor S, Richardson CC. The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I. P Natl Acad Sci USA. 1997;94(2):479–84.
Article
CAS
Google Scholar
Kaguni LS, Oliveira MT. Structure, function and evolution of the animal mitochondrial replicative DNA helicase. Crit Rev Biochem Mol. 2016;51(1):53–64.
Article
CAS
Google Scholar
Morley SA, Nielsen BL. Chloroplast DNA copy number changes during plant development in organelle DNA polymerase mutants. Front Plant Sci. 2016;7.
Cupp JD, Nielsen BL. Arabidopsis thaliana organellar DNA polymerase IB mutants exhibit reduced mtDNA levels with a decrease in mitochondrial area density. Physiol Plantarum. 2013;149(1):91–103.
Article
CAS
Google Scholar
Trasvina-Arenas CH, Baruch-Torres N, Cordoba-Andrade FJ, Ayala-Garcia VM, Garcia-Medel PL, Diaz-Quezada C, et al. Identification of a unique insertion in plant organellar DNA polymerases responsible for 5 '-dRP lyase and strand-displacement activities: implications for base excision repair. DNA Repair. 2018;65:1–10.
Article
CAS
PubMed
Google Scholar
Udy DB, Belcher S, Williams-Carrier R, Gualberto JM, Barkan A. Effects of reduced chloroplast gene copy number on chloroplast gene expression in maize. Plant Physiol. 2012;160(3):1420–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marechal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010;186(2):299–317.
Article
CAS
PubMed
Google Scholar
Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA. Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell. 2007;19(4):1251–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowan BA, Oldenburg DJ, Bendich AJ. RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. J Exp Bot. 2010;61(10):2575–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller-Messmer M, Kuhn K, Bichara M, Le Ret M, Imbault P, Gualberto JM. RecA-dependent DNA repair results in increased Heteroplasmy of the Arabidopsis mitochondrial genome. Plant Physiol. 2012;159(1):211–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krause K, Kilbienski I, Mulisch M, Rodiger A, Schafer A, Krupinska K. DNA-binding proteins of the whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett. 2005;579(17):3707–12.
Article
CAS
PubMed
Google Scholar
Marechal A, Parent JS, Veronneau-Lafortune F, Joyeux A, Lang BF, Brisson N. Whirly proteins maintain plastid genome stability in Arabidopsis. P Natl Acad Sci USA. 2009;106(34):14693–8.
Article
CAS
Google Scholar
Zaegel V, Guermann B, Le Ret M, Andres C, Meyer D, Erhardt M, et al. The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. Plant Cell. 2006;18(12):3548–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. P Natl Acad Sci USA. 2003;100(10):5968–73.
Article
CAS
Google Scholar
Coordinators NR. Database resources of the National Center for biotechnology information. Nucleic Acids Res. 2018;46(D1):D8–D13.
Article
Google Scholar
Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27(1):135–45.
Article
CAS
PubMed
Google Scholar
Pais FS, Ruy PC, Oliveira G, Coimbra RS. Assessing the efficiency of multiple sequence alignment programs. Algorithms Mol Biol. 2014;9(1):4.
Article
PubMed
PubMed Central
Google Scholar
Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A. 2011;108(49):E1293–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goulas T, Cuppari A, Garcia-Castellanos R, Snipas S, Glockshuber R, Arolas JL, et al. The pCri system: a vector collection for recombinant protein expression and purification. PLoS One. 2014;9(11):e112643.
Article
PubMed
PubMed Central
Google Scholar
Minas K, McEwan NR, Newbold CJ, Scott KP. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett. 2011;325(2):162–9.
Article
CAS
PubMed
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C-T method. Nat Protoc. 2008;3(6):1101–8.
Article
CAS
PubMed
Google Scholar
Renaux A, Consortium U. UniProt: the universal protein knowledgebase (vol 45, pg D158, 2017). Nucleic Acids Res. 2018;46(5):2699.
Article
Google Scholar
Bernstein JA, Richardson CC. A 7-kDa region of the bacteriophage T7 gene 4 protein is required for primase but not for helicase activity. Proc Natl Acad Sci U S A. 1988;85(2):396–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kusakabe T, Richardson CC. The role of the zinc motif in sequence recognition by DNA primases. J Biol Chem. 1996;271(32):19563–70.
Article
CAS
PubMed
Google Scholar
Nielsen H. Predicting secretory proteins with SignalP. In: Kihara D, editor. Protein function prediction: methods and protocols. New York, NY: Springer New York; 2017. p. 59–73.
Chapter
Google Scholar
Ramirez-Sanchez O, Perez-Rodriguez P, Delaye L, Tiessen A. Plant proteins are smaller because they are encoded by fewer exons than animal proteins. Genom Proteom Bioinf. 2016;14(6):357–70.
Article
Google Scholar