Cerutti H, Johnson AM, Boynton JE, Gillham NW. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol Cell Biol. 1995;15:3003–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nicolai M, et al. Higher plant chloroplasts import the mRNA coding for the eucaryotic translation initiation factor 4E. FEBS Lett. 2007;581:3921–6.
Article
PubMed
CAS
Google Scholar
Martin W, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A. 2002;99:12246–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Waters MT, Langdale JA. The making of a chloroplast. EMBO J. 2009;28:2861–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soll J, Schleiff E. Protein import into chloroplasts. Nat Rev Mol Cell Biol. 2004;5:198–208.
Article
PubMed
CAS
Google Scholar
Schleiff E, Becker T. Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol. 2011;12:48–59.
Article
PubMed
CAS
Google Scholar
Jarvis P, Lopez-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol. 2013;14:787–802.
Article
PubMed
CAS
Google Scholar
Akopian T, et al. The active ClpP protease from M. Tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. EMBO J. 2012;31:1529–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Constan D, Froehlich JE, Rangarajan S, Keegstra K. A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis. Plant Physiol. 2004;136:3605–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK. Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol Plant. 2002;114:92–101.
Article
PubMed
CAS
Google Scholar
Sjogren LL, MacDonald TM, Sutinen S, Clarke AK. Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol. 2004;136:4114–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Constan D, Patel R, Keegstra K, Jarvis P. An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant J. 2004;38:93–106.
Article
PubMed
CAS
Google Scholar
Nishimura K, van Wijk KJ. Organization, function and substrates of the essential Clp protease system in plastids. Biochim Biophys Acta. 2015;1847(9):915–30.
Article
PubMed
CAS
Google Scholar
Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell. 2003;15:1480–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bollenbach TJ, Sharwood RE, Gutierrez R, Lerbs-Mache S, Stern DB. The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis. Plant Mol Biol. 2009;69:541–52.
Article
PubMed
CAS
Google Scholar
Hanaoka M, Kanamaru K, Takahashi H, Tanaka K. Molecular genetic analysis of chloroplast gene promoters dependent on SIG2, a nucleus-encoded sigma factor for the plastid-encoded RNA polymerase, in Arabidopsis thaliana. Nucleic Acids Res. 2003;31:7090–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liere K, Kaden D, Maliga P, Borner T. Overexpression of phage-type RNA polymerase RpoTp in tobacco demonstrates its role in chloroplast transcription by recognizing a distinct promoter type. Nucleic Acids Res. 2004;32:1159–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao ZP, et al. A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. Plant Physiol. 2011;157:1733–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao ZP, Chen GX, Yang ZN. Regulatory role of Arabidopsis pTAC14 in chloroplast development and plastid gene expression. Plant Signal Behav. 2012;7:1354–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Woodson JD, Perez-Ruiz JM, Schmitz RJ, Ecker JR, Chory J. Sigma factor-mediated plastid retrograde signals control nuclear gene expression. Plant J. 2012;73(1):1–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stolc V, et al. Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad Sci U S A. 2005;102:4453–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johnson X, et al. MRL1, a conserved Pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell. 2010;22:234–48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu X, Yu F, Rodermel S. An Arabidopsis pentatricopeptide repeat protein, SUPPRESSOR OF VARIEGATION7, is required for FtsH-mediated chloroplast biogenesis. Plant Physiol. 2010;154:1588–601.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zoschke R, et al. The pentatricopeptide repeat-SMR protein ATP4 promotes translation of the chloroplast atpB/E mRNA. Plant J. 2012;72:547–58.
Article
PubMed
CAS
Google Scholar
Ohta M, Sugita M, Sugiura M. Three types of nuclear genes encoding chloroplast RNA-binding proteins (cp29, cp31 and cp33) are present in Arabidopsis thaliana: presence of cp31 in chloroplasts and its homologue in nuclei/cytoplasms. Plant Mol Biol. 1995;27:529–39.
Article
PubMed
CAS
Google Scholar
Asakura, Y., Galarneau, E., Watkins, K.P., Barkan, A. & van Wijk, K.J. Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiol 159, 961–974 (2012).
Sharwood RE, Halpert M, Luro S, Schuster G, Stern DB. Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA. RNA. 2011;17:2165–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishimura K, et al. CLPS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis. Plant Cell. 2013;25:2276–301.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chu CC, Li HM. The amino-terminal domain of chloroplast Hsp93 is important for its membrane association and functions in vivo. Plant Physiol. 2012;158:1656–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun Q, et al. PPDB, the plant proteomics database at Cornell. Nucleic Acids Res. 2009;37:D969–74.
Article
PubMed
CAS
Google Scholar
Kim J, et al. Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. Plant Physiol. 2013;162:157–79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sjogren LL, Stanne TM, Zheng B, Sutinen S, Clarke AK. Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell. 2006;18:2635–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rudella A, Friso G, Alonso JM, Ecker JR, Wijk v. K.J. Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell. 2006;18:1704–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Flores-Perez U, Jarvis P. Molecular chaperone involvement in chloroplast protein import. Biochim Biophys Acta. 2013;1833:332–40.
Article
PubMed
CAS
Google Scholar
Su PH, Li HM. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell. 2010;22:1516–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Swiatecka-Hagenbruch M, Emanuel C, Hedtke B, Liere K, Borner T. Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase. Nucleic Acids Res. 2008;36:785–92.
Article
PubMed
CAS
Google Scholar
Courtois F, Merendino L, Demarsy E, Mache R, Lerbs-Mache S. Phage-type RNA polymerase RPOTmp transcribes the rrn operon from the PC promoter at early developmental stages in Arabidopsis. Plant Physiol. 2007;145:712–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
McBride KE, Schaaf DJ, Daley M, Stalker DM. Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase. Proc Natl Acad Sci U S A. 1994;91:7301–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hajdukiewicz PT, Allison LA, Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 1997;16:4041–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liere K, Maliga P. In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J. 1999;18:249–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lahiri SD, Yao J, McCumbers C, Allison LA. Tissue-specific and light-dependent expression within a family of nuclear-encoded sigma-like factors from Zea mays. Mol Cell Biol Res Commun. 1999;1:14–20.
Article
PubMed
CAS
Google Scholar
Allison LA. The role of sigma factors in plastid transcription. Biochimie. 2000;82:537–48.
Article
PubMed
CAS
Google Scholar
Shirano Y, et al. Chloroplast development in Arabidopsis thaliana requires the nuclear-encoded transcription factor sigma B. FEBS Lett. 2000;485:178–82.
Article
PubMed
CAS
Google Scholar
Kanamaru K, et al. An Arabidopsis sigma factor (SIG2)-dependent expression of plastid-encoded tRNAs in chloroplasts. Plant Cell Physiol. 2001;42:1034–43.
Article
PubMed
CAS
Google Scholar
Koussevitzky S, et al. An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol Biol. 2007;63:85–96.
Article
PubMed
CAS
Google Scholar
Henderson JN, Zhang J, Evans BW, Redding K. Disassembly and degradation of photosystem I in an in vitro system are multievent, metal-dependent processes. J Biol Chem. 2003;278:39978–86.
Article
PubMed
CAS
Google Scholar
Allison LA, Simon LD, Maliga P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 1996;15:2802–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Serino G. Maliga, P. RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme. Plant Physiol. 1998;117:1165–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sjogren LL, et al. Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance. J Biol Chem. 2014;289:11318–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park S, Rodermel SR. Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc Natl Acad Sci U S A. 2004;101:12765–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim J, et al. Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis. Plant Cell. 2009;21(6):1669–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zoschke R, Qu Y, Zubo YO, Borner T, Schmitz-Linneweber C. Mutation of the pentatricopeptide repeat-SMR protein SVR7 impairs accumulation and translation of chloroplast ATP synthase subunits in Arabidopsis thaliana. J Plant Res. 2013;126:403–14.
Article
PubMed
CAS
Google Scholar
Jarvis P, Soll JT. Tic, and chloroplast protein import. Biochim Biophys Acta. 2002;1590:177–89.
Article
PubMed
CAS
Google Scholar
Peltier, J.B., et al. Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications J Biol Chem 2004;279:4768–4781.
Nakagawara E, Sakuraba Y, Yamasato A, Tanaka R, Tanaka A. Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J. 2007;49:800–9.
Article
PubMed
CAS
Google Scholar
Olinares, P.D., Kim, J. & van Wijk, K.J. The Clp protease system: a central component of the chloroplast protease network. Biochim Biophys Acta 2011;1807:999–1011.
Tasaki T, Sriram SM, Park KS, Kwon YT. The N-end rule pathway. Annu Rev Biochem. 2012;81:261–89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Erbse A, et al. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature. 2006;439:753–6.
Article
PubMed
CAS
Google Scholar
Kovacheva S, Bedard J, Wardle A, Patel R, Jarvis P. Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J. 2007;50:364–79.
Article
PubMed
CAS
Google Scholar
Wilson M, Jensen GS, Haswell E. Two mechanosensitive channel homologs influence division ring placement in Arabidopsis chloroplasts. Plant Cell. 2011;23(8):2939–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nguyen TH, et al. Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol Cell Proteomics. 2012;11:1140–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang H, et al. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach. PROTEOMICS. 2010;10:2780–9.
Article
PubMed
CAS
Google Scholar
Hirsch-Hoffmann M, Gruissem W, Baerenfaller K. pep2pro: the high-throughput proteomics data processing, analysis, and visualization tool. Front Plant Sci. 2012;3:123.
Article
PubMed
PubMed Central
Google Scholar