Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol. 2008;8:16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Almeida DPF, Huber DJ. Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol Plant. 1999;105:506–12.
Article
CAS
Google Scholar
Toivonen PMA, Brummell DA. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Technol. 2008;48:1–14.
Article
CAS
Google Scholar
Shackel KA, Greve C, Labavitch JM, Ahmadi H. Cell turgor changes associated with ripening in tomato pericarp tissue. Plant Physiol. 1991;97:814–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saladié M, Matas AJ, Isaacson T, Jenks MA, Goodwin SM, Niklas KJ, Xiaolin R, Labavitch JM, Shackel KA, Fernie AR, Lytovchenko A, O’Neill MA, Watkins CB, Rose JKC. A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol. 2007;144:1012–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brummell DA. Cell wall disassembly in ripening fruit. Funct Plant Biol. 2006;33:103–19.
Article
CAS
Google Scholar
Galvez-Lopez D, Laurens F, Quéméner B, Lahaye M. Variability of cell wall polysaccharides composition and hemicellulose enzymatic profile in an apple progeny. Int J Biol Macromol. 2011;49:1104–9.
Article
CAS
PubMed
Google Scholar
Tong C, Krueger D, Vickers Z, Bedford D, Luby J, El-Shiekh A, Shackel KA, Ahmadi H. Comparison of softening-related changes during storage of ‘Honeycrisp’ apple, its parents, and ‘Delicious’. J Amer Soc Hort Sci. 1999;124:407–15.
Google Scholar
Nelmes BJ, Preston RD. Wall development in apple fruits: a study of the life history of a parenchyma cell. J Exp Bot. 1968;19:496–518.
Article
CAS
Google Scholar
Fischer M, Amado R. Changes in the pectic substances of apples during development and postharvest ripening. Part 1: analysis of the alcohol-insoluble residue. Carbohydr Polym. 1994;25:161–6.
Article
CAS
Google Scholar
Gross KC, Sams CE. Changes in cell wall neutral sugar composition during fruit ripening: a species survey. Phytochemistry. 1984;23:2457–61.
Article
CAS
Google Scholar
Peña MJ, Carpita NC. Loss of highly branched arabinans and debranching of rhamnogalacturonan I accompany loss of firm texture and cell separation during prolonged storage of apple. Plant Physiol. 2004;135:1305–13.
Article
PubMed
PubMed Central
Google Scholar
Redgwell RJ, Fischer M, Kendal E, MacRae EA. Galactose loss and fruit ripening: high-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls. Planta. 1997;203:174–81.
Article
Google Scholar
Goulao LF, Oliveira CM. Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends Food Sci Technol. 2008;19:4–25.
Article
CAS
Google Scholar
Nobile PM, Wattebled F, Quecini V, Girardi CL, Lormeau M, Laurens F. Identification of a novel α-L-arabinofuranosidase gene associated with mealiness in apple. J Exp Bot. 2011;62:4309–21.
Article
CAS
PubMed
Google Scholar
Wei J, Ma F, Shi S, Qi X, Zhu X, Yuan J. Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit. Postharvest Biol Technol. 2010;56:147–54.
Article
CAS
Google Scholar
Goulao LF, Santos J, de Sousa I, Oliveira CM. Patterns of enzymatic activity of cell wall-modifying enzymes during growth and ripening of apples. Postharvest Biol Technol. 2007;43:307–18.
Article
CAS
Google Scholar
Jarvis MC, Briggs SPH, Knox JP. Intercellular adhesion and cell separation in plants. Plant Cell Environ. 2003;26:977–89.
Article
Google Scholar
Ng JKT, Schröder R, Brummell DA, Sutherland PW, Hallett IC, Smith BG, Melton LD, Johnston JW. Lower cell wall pectin solubilisation and galactose loss during early fruit development in apple (Malus x domestica) cultivar “Scifresh” are associated with slower softening rate. J Plant Physiol. 2015;176C:129–37.
Article
CAS
Google Scholar
Atkinson RG, Sutherland PW, Johnston SL, Gunaseelan K, Hallett IC, Mitra D, Brummell DA, Schröder R, Johnston JW, Schaffer RJ. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC Plant Biol. 2012;12:129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segonne-Mikol S, Bruneau M, Celton J-M, Le Gall S, Francin-Allami M, Juchaux M, Laurens F, Orsel M, Renou J-P. Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation. BMC Plant Biol. 2014;14:375.
Article
CAS
Google Scholar
Percy AE, Melton LD, Jameson PE. Xyloglucan and hemicelluloses in the cell wall during apple fruit development and ripening. Plant Sci. 1997;125:31–9.
Article
CAS
Google Scholar
Atkinson RG, Johnston SL, Yauk Y-K, Sharma NN, Schröder R. Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biol Technol. 2009;51:149–57.
Article
CAS
Google Scholar
Costa F, Van de Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S. Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (malus × domestica borkh.) and pear (pyrus communis). Tree Genet Genomes. 2008;4:575–86.
Article
Google Scholar
Ireland HS, Gunaseelan K, Muddumage R, Tacken EJ, Putterill J, Johnston JW, Schaffer RJ. Ethylene regulates apple (malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes. Plant Cell Physiol. 2014;55:1005–16.
Article
CAS
PubMed
Google Scholar
Trujillo DI, Mann HS, Tong CBS. Examination of expansin genes as related to apple fruit crispness. Tree Genet Genomes. 2011;8:27–38.
Article
Google Scholar
Wakasa Y, Hatsuyama Y, Takahashi A, Sato T, Niizeki M, Harada T. Divergent expression of six expansin genes during apple fruit ontogeny. Eur J Hortic Sci. 2003;68:253–9.
CAS
Google Scholar
Ting VJL, Silcock P, Bremer PJ, Biasioli F. X-ray micro-computer tomographic method to visualize the microstructure of different apple cultivars. J Food Sci. 2013;78:E1735–42.
Article
CAS
PubMed
Google Scholar
Winisdorffer G, Musse M, Quellec S, Barbacci A, Le GS, Mariette F, Lahaye M. Analysis of the dynamic mechanical properties of apple tissue and relationships with the intracellular water status, gas distribution, histological properties and chemical composition. Postharvest Biol Technol. 2015;104:1–16.
Article
CAS
Google Scholar
Ng JKT, Schröder R, Sutherland PW, Hallett IC, Hall MI, Prakash R, Smith BG, Melton LD, Johnston JW. Cell wall structures leading to cultivar differences in softening rates develop early during apple (malus × domestica) fruit growth. BMC Plant Biol. 2013;13:183.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khan AA, Vincent JFV. Compressive stiffness and fracture properties of apple and potato parenchyma. J Texture Stud. 1993;24:423–35.
Article
Google Scholar
Barreiro P, Moya A, Correa E, Ruiz-Altisent M, Fernández-Valle M, Peirs A, Wright KM, Hills BP. Prospects for the rapid detection of mealiness in apples by nondestructive NMR relaxometry. Appl Magn Reson. 2002;22:387–400.
Article
CAS
Google Scholar
Ray S, Vigouroux J, Quémener B, Bonnin E, Lahaye M. Novel and diverse fine structures in LiCl-DMSO extracted apple hemicelluloses. Carbohydr Polym. 2014;108:46–57.
Article
CAS
PubMed
Google Scholar
Nara K, Ito S, Kato K, Kato Y. Isolation of galactoglucomannan from apple hemicellulosic polysaccharides with binding capacity to cellulose. J Appl Glycosci. 2004;51:321–5.
Article
CAS
Google Scholar
Voragen FGJ, Schols HA, Pilnik W. Structural features of the hemicellulose polymers of apples. Z Lebensm Unters Forsch. 1986;183:105–10.
Article
CAS
Google Scholar
Celton J-M, Gaillard S, Bruneau M, Pelletier S, Aubourg S, Martin-Magniette M-L, Navarro L, Laurens F, Renou J-P. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. New Phytol. 2014;203:287–99.
Article
CAS
PubMed
Google Scholar
San Clemente H, Jamet E. WallProtDB, a database resource for plant cell wall proteomics. Plant Methods. 2015;11:2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, et al. The genome of the domesticated apple (malus × domestica borkh.). Nat Genet. 2010;42:833–9.
Article
CAS
PubMed
Google Scholar
Gwanpua SG, Mellidou I, Boeckx J, Kyomugasho C, Bessemans N, Verlinden BE, Hertog MLATM, Hendrickx M, Nicolai B, Geeraerd AH. Expression analysis of candidate cell wall-related genes associated with changes in pectin biochemistry during postharvest apple softening. Postharvest Biol Technol. 2016.
Harb J, Gapper NE, Giovannoni JJ, Watkins CB. Molecular analysis of softening and ethylene synthesis and signaling pathways in a non-softening apple cultivar, “Honeycrisp” and a rapidly softening cultivar, “McIntosh.”. Postharvest Biol Technol. 2012;64:94–103.
Article
CAS
Google Scholar
Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WGT, Knox JP. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol. 2008;8:60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Renard CMGC, Lomax JA, Boon JJ. Apple-fruit xyloglucans: a comparative study of enzyme digests of whole cell walls and of alkali-extracted xyloglucans. Carbohydr Res. 1992;232:303–20.
Article
CAS
PubMed
Google Scholar
Soria-Guerra RE, Rosales-Mendoza S, Gasic K, Wisniewski ME, Band M, Korban SS. Gene expression is highly regulated in early developing fruit of apple. Plant Mol Biol Report. 2011;29:885–97.
Article
CAS
Google Scholar
Lee Y-P, Yu G-H, Seo YS, Han SE, Choi Y-O, Kim D, Mok I-G, Kim WT, Sung S-K. Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep. 2007;26:917–26.
Article
CAS
PubMed
Google Scholar
Soglio V, Costa F, Molthoff JW, Weemen-Hendriks WMJ, Schouten HJ, Gianfranceschi L. Transcription analysis of apple fruit development using cDNA microarrays. Tree Genet Genomes. 2009;5:685–98.
Article
Google Scholar
Zhu Y, Zheng P, Varanasi V, Shin S, Main D, Curry E, Mattheis JP. Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes. Tree Genet Genomes. 2012;8:1389–406.
Article
Google Scholar
Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H. A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 1998;17:5563–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson MH, Holman TJ, Sørensen I, Cancho-Sanchez E, Wells DM, Swarup R, Knox JP, Willats WGT, Ubeda-Tomás S, Holdsworth M, Bennett MJ, Vissenberg K, Hodgman TC. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Front cell Dev Biol. 2015;3:10.
Article
PubMed
PubMed Central
Google Scholar
Xiao C, Somerville C, Anderson CT. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis. Plant Cell. 2014;26:1018–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Massiot P, Baron A, Drilleau JF. Effect of storage of apple on the enzymatic hydrolysis of cell wall polysaccharides. Carbohydr Polym. 1996;29:301–7.
Article
CAS
Google Scholar
Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, Van de Weg WE. QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (malus × domestica borkh.). J Exp Bot. 2010;61:3029–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brummell DA, Dal Cin V, Crisosto CH, Labavitch JM. Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot. 2004;55:2029–39.
Article
CAS
PubMed
Google Scholar
Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta. 2015.
Harriman RW, Tieman DM, Handa AK. Molecular cloning of tomato pectin methylesterase gene and its expression in Rutgers, ripening inhibitor, nonripening, and never ripe tomato fruits. PLANT Physiol. 1991;97:80–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyodo H, Terao A, Furukawa J, Sakamoto N, Yurimoto H, Satoh S, Iwai H. Tissue specific localization of pectin-Ca2+ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum). PLoS One. 2013;8:e78949.
Article
PubMed
PubMed Central
Google Scholar
Schols HA, Voragen AGJ. Complex pectins: Structure elicudation using enzymes In: Visser J, Voragen AGJ, editors. Pectins and Pectinases. vol. 14. Amsterdam: Elsevier; 1996. p. 3–19.
Greve LC, Labavitch JM. Cell wall metabolism in ripening fruit : V. Analysis of cell wall synthesis in ripening tomato pericarp tissue using a D-[U-13C] glucose tracer and gas chromatography–mass spectrometry. Plant Physiol. 1991;97:1456–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huysamer M, Greve LC, Labavitch JM. Cell wall metabolism in ripening fruit. VIII. Cell wall composition and synthetic capacity of two regions of the outer pericarp of mature green and red ripe cv. Jackpot tomatoes. Physiol Plant. 1997;101:314–22.
Article
CAS
Google Scholar
Pauly M, Qin Q, Greene H, Albersheim P, Darvill A, York WS. Changes in the structure of xyloglucan during cell elongation. Planta. 2001;212:842–50.
Article
CAS
PubMed
Google Scholar
Lahaye M, Quemener B, Causse M, Seymour GB. Hemicellulose fine structure is affected differently during ripening of tomato lines with contrasted texture. Int J Biol Macromol. 2012;51:462–70.
Article
CAS
PubMed
Google Scholar
Park YB, Cosgrove DJ. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 2015;56:180–94.
Article
PubMed
Google Scholar
Han Y, Zhu Q, Zhang Z, Meng K, Hou Y, Ban Q, Suo J, Rao J. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. PLoS One. 2015;10:e0123668.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miedes E, Lorences EP. Xyloglucan endotransglucosylase/hydrolases (XTHs) during tomato fruit growth and ripening. J Plant Physiol. 2009;166:489–98.
Article
CAS
PubMed
Google Scholar
Xiao C, Zhang T, Zheng Y, Cosgrove DJ, Anderson CT. Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant Physiol. 2016;170:234–49.
Johnson KL, Jones BJ, Bacic A, Schultz CJ. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol. 2003;133:1911–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J. 2010;62:689–703.
Article
CAS
PubMed
Google Scholar
Günl M, Pauly M. AXY3 encodes a α-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls. Planta. 2011;233:707–19.
Article
PubMed
CAS
Google Scholar
Liepman AH, Wilkerson CG, Keegstra K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U S A. 2005;102:2221–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goubet F, Misrahi A, Park SK, Zhang Z, Twell D, Dupree P. AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis. Plant Physiol. 2003;131:547–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melton LD, Smith BG, Ibrahim R, Schröder R. Mannans in primary and secondary plant cell walls. New Zeal J For Sci. 2009;39:153–60.
CAS
Google Scholar
Schröder R, Atkinson RG, Redgwell RJ. Re-interpreting the role of endo-beta-mannanases as mannan endotransglycosylase/hydrolases in the plant cell wall. Ann Bot. 2009;104:197–204.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ordaz-Ortiz JJ, Marcus SE, Paul Knox J. Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Mol Plant. 2009;2:910–21.
Article
CAS
PubMed
Google Scholar
Volz RK, Harker FR, Lang S. Firmness decline in ‘Gala’ apple during fruit development. J Amer Soc Hort Sci. 2003;128:797–802.
Google Scholar
Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell. 2013;25:270–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prakash R, Johnston SL, Boldingh HL, Redgwell RJ, Atkinson RG, Melton LD, Brummell DA, Schröder R. Mannans in tomato fruit are not depolymerized during ripening despite the presence of endo-β-mannanase. J Plant Physiol. 2012;169:1125–33.
Article
CAS
PubMed
Google Scholar
Johnston SL, Prakash R, Chen NJ, Kumagai MH, Turano HM, Cooney JM, Atkinson RG, Paull RE, Cheetamun R, Bacic A, Brummell DA, Schröder R. An enzyme activity capable of endotransglycosylation of heteroxylan polysaccharides is present in plant primary cell walls. Planta. 2013;237:173–87.
Article
CAS
PubMed
Google Scholar
McQueen-Mason S. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992;4:1425–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 2015;25:162–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brummell DA, Harpster MH, Dunsmuir P. Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol Biol. 1999;39:161–9.
Article
CAS
PubMed
Google Scholar
Hiwasa K, Rose JKC, Nakano R, Inaba A, Kubo Y. Differential expression of seven alpha-expansin genes during growth and ripening of pear fruit. Physiol Plant. 2003;117:564–72.
Article
CAS
PubMed
Google Scholar
Harrison EP, McQueen-Mason SJ, Manning K. Expression of six expansin genes in relation to extension activity in developing strawberry fruit. J Exp Bot. 2001;52:1437–46.
Article
CAS
PubMed
Google Scholar
Zhang S, Xu R, Gao Z, Chen C, Jiang Z, Shu H. A genome-wide analysis of the expansin genes in malus × domestica. Mol Genet Genomics. 2014;289:225–36.
Article
CAS
PubMed
Google Scholar
Hayama H, Ito A, Moriguchi T, Kashimura Y. Identification of a new expansin gene closely associated with peach fruit softening. Postharvest Biol Technol. 2003;29:1–10.
Article
CAS
Google Scholar
Sampedro J, Cosgrove DJ. The expansin superfamily. Genome Biol. 2005;6:242.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tateishi A, Nagashima K, Mathooko FM, Mwaniki MW, Kubo Y, Inaba A, Yamaki S, Inoue H. Differential expression of members of the β-galactosidase gene family during Japanese pear (Pyrus pyrifolia L.) fruit growth and on-tree ripening. J Am Soc Hortic Sci. 2005;130:819–29.
CAS
Google Scholar
Franková L, Fry SC. Biochemistry and physiological roles of enzymes that “cut and paste” plant cell-wall polysaccharides. J Exp Bot. 2013;64:3519–50.
Article
PubMed
CAS
Google Scholar
de Lima D, Buckeridge M. Interaction between cellulose and storage xyloglucans: the influence of the degree of galactosylation. Carbohydr Polym. 2001;46:157–63.
Article
Google Scholar
Zykwinska A, Thibault J-F, Ralet M-C. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged. J Exp Bot. 2007;58:1795–802.
Article
CAS
PubMed
Google Scholar
Lin D, Lopez-Sanchez P, Gidley MJ. Binding of arabinan or galactan during cellulose synthesis is extensive and reversible. Carbohydr Polym. 2015;126:108–21.
Article
CAS
PubMed
Google Scholar
Maris A, Suslov D, Fry SC, Verbelen J-P, Vissenberg K. Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J Exp Bot. 2009;60:3959–72.
Article
CAS
PubMed
Google Scholar
Maris A, Kaewthai N, Eklöf JM, Miller JG, Brumer H, Fry SC, Verbelen J-P, Vissenberg K. Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana. J Exp Bot. 2011;62:261–71.
Article
CAS
PubMed
Google Scholar
Shi H, Kim Y, Guo Y, Stevenson B, Zhu J-K. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell. 2003;15:19–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gwanpua SG, Mellidou I, Boeckx J, Kyomugasho C, Bessemans N, Verlinden BE, Hertog MLATM, Hendrickx M, Nicolai BM, Geeraerd AH. Expression analysis of candidate cell wall-related genes associated with changes in pectin biochemistry during postharvest apple softening. Postharvest Biol Technol. 2016;112:176–85.
Article
CAS
Google Scholar
Thibault J-F. Automatisation du dosage des substances pectiques par la méthode au meta-hydroxydiphenyl. Leb Technol. 1979;12:247–51.
CAS
Google Scholar
Levigne S, Thomas M, Ralet M-C, Quemener B, Thibault J-F. Determination of the degrees of methylation and acetylation of pectins using a C18 column and internal standards. Food Hydrocoll. 2002;16:547–50.
Article
CAS
Google Scholar
Fischer M, Arrigoni E, Amado R. Changes in the pectic substances of apples during development and postharvest ripening. Part 2: analysis of the pectic fractions. Carbohydr Polym. 1994;25:167–75.
Article
Google Scholar
Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54:484–9.
Article
CAS
PubMed
Google Scholar
Smith DL, Abbott JA, Gross KC. Down-regulation of tomato beta-galactosidase 4 results in decreased fruit softening. Plant Physiol. 2002;129:1755–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cosio C, Dunand C. Specific functions of individual class III peroxidase genes. J Exp Bot. 2009;60:391–408.
Article
CAS
PubMed
Google Scholar
Brownleader MD, Ahmed N, Trevan M, Chaplin MF, Dey PM. Purification and partial characterization of tomato extensin peroxidase. Plant Physiol. 1995;109:1115–23.
CAS
PubMed
PubMed Central
Google Scholar
Liszkay A, Kenk B, Schopfer P. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta. 2003;217:658–67.
Article
CAS
PubMed
Google Scholar
Dunand C, Tognolli M, Overney S, von Tobel L, de Meyer M, Simon P, Penel C. Identification and characterisation of Ca2 + −pectate binding peroxidases in Arabidopsis thaliana. J Plant Physiol. 2002;159:1165–71.
Article
CAS
Google Scholar
Fry SC. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J. 1998;332((Pt 2):507–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schopfer P. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J. 2001;28:679–88.
Article
CAS
PubMed
Google Scholar
Passardi F, Tognolli M, De Meyer M, Penel C, Dunand C. Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta. 2006;223:965–74.
Article
CAS
PubMed
Google Scholar
Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 2004;9:534–40.
Article
CAS
PubMed
Google Scholar
Castellarin SD, Gambetta GA, Wada H, Krasnow MN, Cramer GR, Peterlunger E, Shackel KA, Matthews MA. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth. J Exp Bot. 2015;67:709–22.
Article
PubMed
PubMed Central
Google Scholar
Grignon C, Sentenac H. pH and ionic conditions in the apoplast. Annu Rev Plant Physiol Plant Mol Biol. 1991;42:103–28.
Article
CAS
Google Scholar
Shiratake K, Martinoia E. Transporters in fruit vacuoles. Plant Biotechnol. 2007;24:127–33.
Article
CAS
Google Scholar
Zhang L-Y, Peng Y-B, Pelleschi-Travier S, Fan Y, Lu Y-F, Lu Y-M, Gao X-P, Shen Y-Y, Delrot S, Zhang D-P. Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol. 2004;135:574–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wada H, Matthews MA, Shackel KA. Seasonal pattern of apoplastic solute accumulation and loss of cell turgor during ripening of Vitis vinifera fruit under field conditions. J Exp Bot. 2009;60:1773–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kouassi AB, Durel C-E, Costa F, Tartarini S, van de Weg E, Evans K, Fernandez-Fernandez F, Govan C, Boudichevskaja A, Dunemann F, Antofie A, Lateur M, Stankiewicz-Kosyl M, Soska A, Tomala K, Lewandowski M, Rutkovski K, Zurawicz E, Guerra W, Laurens F. Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe. Tree Genet Genomes. 2009;5:659–72.
Article
Google Scholar
Ben Sadok I, Tiecher A, Galvez-Lopez D, Lahaye M, Lasserre-Zuber P, Bruneau M, Hanteville S, Robic R, Cournol R, Laurens F. Apple fruit texture QTLs: year and cold storage effects on sensory and instrumental traits. Tree Genet Genomes. 2015;11:119.
Article
Google Scholar
Pitts MJ, Cavalieri RP. Objective assessment of apple maturity based on starch location. Trans ASAE. 1988;31.
Rienth M, Torregrosa L, Ardisson M, De Marchi R, Romieu C. Versatile and efficient RNA extraction protocol for grapevine berry tissue, suited for next generation RNA sequencing. Aust J Grape Wine Res. 2014;20:247–54.
Article
CAS
Google Scholar
Celton J-M, Dheilly E, Guillou M-C, Simonneau F, Juchaux M, Costes E, Laurens F, Renou J-P. Additional amphivasal bundles in pedicel pith exacerbate central fruit dominance and induce self-thinning of lateral fruitlets in apple. Plant Physiol. 2014;164:1930–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Development Core Team: R: A language and environment for statistical computing. 2013. https://www.r-project.org/.
Bolstad BM. Probe level quantile normalization of high density oligonucleotide array data. 2001.
Google Scholar
Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Hubert W, editors. Bioinformatics and computational biology solutions using R and bioconductor. New York: Springer; 2005. p. 397–420.
Chapter
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible W-R, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M. Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol. 2005;138:1195–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sturn A, Quackenbush J, Trajanoski Z. Genesis. Bioinformatics. 2002;18:207–8.
Article
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clemente HS, Pont-Lezica R, Jamet E. Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: plant cell wall proteomics as a test case. Bioinform Biol Insights. 2009;3:15–28.
PubMed
PubMed Central
Google Scholar
Fawal N, Li Q, Savelli B, Brette M, Passaia G, Fabre M, Mathé C, Dunand C. PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Res. 2013;41:D441–4.
Article
CAS
PubMed
Google Scholar
Lassmann T, Sonnhammer ELL. Kalign--an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics. 2005;6:298.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ralet M-C, Williams MAK, Tanhatan-Nasseri A, Ropartz D, Quemener B, Bonnin E. Innovative enzymatic approach to resolve homogalacturonans based on their methylesterification pattern. Biomacromolecules. 2012;13:1615–24.
Article
CAS
PubMed
Google Scholar
Hoebler C, Barry JL, David A, Delort-Laval J. Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas–liquid chromatography. J Agric Food Chem. 1989;37:360–7.
Article
CAS
Google Scholar
Englyst HN, Cummings JH. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant food. J Assoc Off Anal Chem. 1988;71:808–14.
CAS
PubMed
Google Scholar
Ropartz D, Bodet P-E, Przybylski C, Gonnet F, Daniel R, Fer M, Helbert W, Bertrand D, Rogniaux H. Performance evaluation on a wide set of matrix-assisted laser desorption ionization matrices for the detection of oligosaccharides in a high-throughput mass spectrometric screening of carbohydrate depolymerizing enzymes. Rapid Commun Mass Spectrom. 2011;25:2059–70.
Article
CAS
PubMed
Google Scholar
Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau J-P, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Grant Reid JS, Seitz HU, Selvendran RR, Voragen AGJ, White AR. An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant. 1993;89:1–3.
Article
CAS
Google Scholar
Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25:1–18.
Article
Google Scholar
Tuomivaara ST, Yaoi K, O'Neill MA, York WS. Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydr Res. 2015;402:56–66.
Article
CAS
PubMed
Google Scholar