Conde C, Silva P, Fontes N, Dias A, Tavares R, Sousa M, Agasse A, Delrot S, Geros H: Biochemical changes throughout grape berry development and fruit and wine quality. Food. 2007, 1: 1-22.
Google Scholar
Kuhn N, Guan L, Dai ZW, Wu B-H, Lauvergeat V, Gomès E, Li S-H, Godoy F, Arce-Johnson P, Delrot S: Berry ripening: recently heard through the grapevine. J Exp Bot 2014, 65:4543–4559.
PubMed
Google Scholar
Robinson AL, Boss PK, Solomon PS, Trengove RD, Heymann H, Ebeler SE: Origins of grape and wine flavor. Part 1. Chemical components and viticultural impacts. Am J Enol Vitic. 2013, 65 (1): 1-24. 10.5344/ajev.2013.12070.
Google Scholar
Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC: Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 2007, 8:187.
PubMed Central
PubMed
Google Scholar
Sefton MA, Francis IL, Williams PJ: The volatile composition of chardonnay juices: a study by flavor precursor analysis. Am J Enol Vitic. 1993, 44 (4): 359-370.
CAS
Google Scholar
Ough CS, Amerine MA: Methods for Analysis of Musts and Wines. 2ndedition. New York: Wiley; 1988.
Google Scholar
Maffei ME, Gertsch J, Appendino G: Plant volatiles: production, function and pharmacology. Nat Prod Rep. 2011, 28 (8): 1359-1380. 10.1039/c1np00021g.
CAS
PubMed
Google Scholar
Kobayashi H, Takase H, Suzuki Y, Tanzawa F, Takata R, Fujita K, Kohno M, Mochizuki M, Suzuki S, Konno T: Environmental stress enhances biosynthesis of flavor precursors, S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-L-cysteine, in grapevine through glutathione S-transferase activation. J Exp Bot. 2011, 62 (3): 1325-1336. 10.1093/jxb/erq376.
PubMed Central
CAS
PubMed
Google Scholar
Klee HJ: Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytol. 2010, 187 (1): 44-56. 10.1111/j.1469-8137.2010.03281.x.
CAS
PubMed
Google Scholar
Schwab W, Davidovich-Rikanati R, Lewinsohn E: Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54 (4): 712-732. 10.1111/j.1365-313X.2008.03446.x.
CAS
PubMed
Google Scholar
Ebeler SE, Thorngate JH: Wine chemistry and flavor: looking into the crystal glass. J Agric Food Chem. 2009, 57 (18): 8098-8108. 10.1021/jf9000555.
CAS
PubMed
Google Scholar
Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J: Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 2010, 10:226.
PubMed Central
PubMed
Google Scholar
Kalua CM, Boss PK: Evolution of volatile compounds during the development of cabernet sauvignon grapes (Vitis vinifera L.). J Agric Food Chem. 2009, 57 (9): 3818-3830. 10.1021/jf803471n.
CAS
PubMed
Google Scholar
Tominaga T, Peyrot des Gachons C, Dubourdieu D: A new type of flavor precursors in Vitis vinifera L. cv. Sauvignon Blanc: S-cysteine conjugates. J Agric Food Chem. 1998, 46 (12): 5215-5219. 10.1021/jf980481u.
CAS
Google Scholar
Bouchilloux P, Darriet P, Henry R, Lavigne-Cruège V, Dubourdieu D: Identification of volatile and powerful odorous thiols in bordeaux red wine varieties. J Agric Food Chem. 1998, 46 (8): 3095-3099. 10.1021/jf971027d.
CAS
Google Scholar
Preston LD, Block DE, Heymann H, Soleas G, Noble AC, Ebeler SE: Defining vegetal aromas in Cabernet Sauvignon using sensory and chemical evaluations. Am J Enol Vitic. 2008, 59 (2): 137-145.
CAS
Google Scholar
Harris RLN, Lacey MJ, Brown WV, Allen MS: Determination of 2-methoxy-3-alkylpyrazines in wine by gas chromatography/mass spectrometry. Vitis. 1987, 26: 201-207.
CAS
Google Scholar
Lacey MJ, Allen MS, Harris RLN, Brown WV: Methoxypyrazines in Sauvignon blanc grapes and wines. Am J Enol Vitic. 1991, 42: 103-108.
CAS
Google Scholar
Dunlevy JD, Soole KL, Perkins MV, Dennis EG, Keyzers RA, Kalua CM, Boss PK: Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: grape-derived aroma compounds important to wine flavour. Plant Mol Biol. 2010, 74 (1–2): 77-89. 10.1007/s11103-010-9655-y.
CAS
PubMed
Google Scholar
Mercurio MD, Dambergs RG, Cozzolino D, Herderich MJ, Smith PA: Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations. J Agric Food Chem. 2010, 58 (23): 12313-12319. 10.1021/jf103230b.
CAS
PubMed
Google Scholar
Kassara S, Kennedy JA: Relationship between red wine grade and phenolics. 2. Tannin composition and size. J Agric Food Chem. 2011, 59 (15): 8409-8412. 10.1021/jf201054p.
CAS
PubMed
Google Scholar
Hanlin RL, Downey MO: Condensed tannin accumulation and composition in skin of Shiraz and Cabernet Sauvignon grapes during berry development. Am J Enol Vitic. 2009, 60 (1): 13-23.
CAS
Google Scholar
Jackson RS: Wine Science: Principles, Practice, Perception. 2nd edition. SanDiego: Academic Press; 2000.
Google Scholar
Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Merillon JM, Cushman JC, Cramer GR: Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 2009, 10:212.
PubMed Central
PubMed
Google Scholar
Cramer GR, Evans J, Ardelean R, Keady M, Quilici D, Schooley DA: Impactsof Regulated-Deficit Irrigation on the Flavor Components of Grapes andWines. In Macromolecules and Secondary Metabolites of Grapevine and Wine.Edited by Jeandet P, Clément C, Conreaux A. Paris: Lavoisier; 2007:53–59.
Google Scholar
Pratt C: Reproductive anatomy in cultivated grapes - a review. Am J Enol Vitic. 1971, 22 (2): 92-109.
Google Scholar
Hardie WJ, Aggenbach SJ, Jaudzems VG: The plastids of the grape pericarp and their significance in isoprenoid synthesis. Aust J Grape Wine Res. 1996, 2 (3): 144-154. 10.1111/j.1755-0238.1996.tb00102.x.
CAS
Google Scholar
Bottcher C, Boss PK, Davies C: Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. J Exp Bot. 2011, 62 (12): 4267-4280. 10.1093/jxb/err134.
PubMed Central
CAS
PubMed
Google Scholar
Ban T, Ishimaru M, Kobayashi S, Shiozaki S, Goto-Yamamoto N, Horiuchi S: Abscisic acid and 2,4-dichlorophenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’ grape berries. J Horticult Sci Biotechnol. 2003, 78: 586-589.
CAS
Google Scholar
Chervin C, Tira-Umphon A, Terrier N, Zouine M, Severac D, Roustan JP: Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Physiol Plant. 2008, 134 (3): 534-546. 10.1111/j.1399-3054.2008.01158.x.
CAS
PubMed
Google Scholar
El-Kereamy A, Chervin C, Roustan J-P, Cheynier V, Souquet J-M, Moutounet M, Raynal J, Ford C, Latche A, Pech J-C, Bouzayen M: Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plant. 2003, 119: 175-182. 10.1034/j.1399-3054.2003.00165.x.
CAS
Google Scholar
Tesniere C, Pradal M, El-Kereamy A, Torregrosa L, Chatelet P, Roustan JP, Chervin C: Involvement of ethylene signalling in a non-climacteric fruit: new elements regarding the regulation of ADH expression in grapevine. J Exp Bot. 2004, 55: 2235-2240. 10.1093/jxb/erh244.
CAS
PubMed
Google Scholar
Chervin C, El-Kereamy A, Roustan J-P, Latché A, Lamon J, Bouzayen M: Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 2004, 167 (6): 1301-1305. 10.1016/j.plantsci.2004.06.026.
CAS
Google Scholar
Trainotti L, Pavanello A, Casadoro G: Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits?. J Exp Bot. 2005, 56: 2037-2046. 10.1093/jxb/eri202.
CAS
PubMed
Google Scholar
Villarreal NM, Bustamante CA, Civello PM, Martinez GA: Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J Sci Food Agric. 2010, 90 (4): 683-689.
CAS
PubMed
Google Scholar
Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G: Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 2007, 30: 1381-1399. 10.1111/j.1365-3040.2007.01716.x.
CAS
PubMed
Google Scholar
Koyama K, Sadamatsu K, Goto-Yamamoto N: Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 2010, 10:367–381.
CAS
PubMed
Google Scholar
Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD: Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta. 2010, 232 (1): 219-234. 10.1007/s00425-010-1165-2.
PubMed Central
CAS
PubMed
Google Scholar
Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F: The basic leucine zipper franscription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiol. 2014, 164 (1): 365-383. 10.1104/pp.113.231977.
PubMed Central
CAS
PubMed
Google Scholar
Pan Q-H, Li M-J, Peng C-C, Zhang N, Zou X, Zou K-Q, Wang X-L, Yu X-C, Wang X-F, Zhang D-P: Abscisic acid activates acid invertases in developing grape berry. Physiol Plant. 2005, 125 (2): 157-170. 10.1111/j.1399-3054.2005.00552.x.
CAS
Google Scholar
Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R: A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell. 2003, 15 (9): 2165-2180. 10.1105/tpc.013854.
PubMed Central
CAS
PubMed
Google Scholar
Lecourieux F, Lecourieux D, Vignault C, Delrot S: A sugar inducible protein kinase, VvSK1, regulates hexose transport and sugar accumulation in grapevine cells. Plant Physiol. 2010, 52: 1096-1106. 10.1104/pp.109.149138.
Google Scholar
Heymann H, LiCalzi M, Cionversano MR, Bauer A, Skogerson K, Matthews M: Effects of extended grape ripening with or without must and wine alcohol manipulations on Cabernet Sauvignon wine sensory characteristics. S Afr J Enol Vitic. 2013, 34: 86-99.
CAS
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Stat Method). 1995, 57: 289-300.
Google Scholar
Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005, 21 (16): 3448-3449. 10.1093/bioinformatics/bti551.
CAS
PubMed
Google Scholar
Licausi F, Ohme-Takagi M, Perata P: APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 2013, 199 (3): 639-649. 10.1111/nph.12291.
CAS
PubMed
Google Scholar
Grimplet J, Van HJ, Carbonell-Bejerano P, Diaz-Riquelme J, Dickerson J, Fennell A, Pezzotti M, Martinez-Zapater JM: Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 2012, 5:213.
PubMed Central
CAS
PubMed
Google Scholar
Grimplet J, Adam-Blondon A-F, Bert P-F, Bitz O, Cantu D, Davies C, Delrot M, Pezzotti M, Rombauts S, Cramer GR: The grapevine nomenclature system. BMC Genomics 2014, 15:1077.
PubMed Central
PubMed
Google Scholar
Nakano T, Suzuki K, Fujimura T, Shinshi H: Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006, 140 (2): 411-432. 10.1104/pp.105.073783.
PubMed Central
CAS
PubMed
Google Scholar
Liu M, Pirrello J, Kesari R, Mila I, Roustan JP, Li Z, Latche A, Pech JC, Bouzayen M, Regad F: A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. Plant J. 2013, 76 (3): 406-419. 10.1111/tpj.12305.
CAS
PubMed
Google Scholar
Liu M, Diretto G, Pirrello J, Roustan JP, Li Z, Giuliano G, Regad F, Bouzayen M: The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening. New Phytol 2014, 203:206–218.,
CAS
PubMed
Google Scholar
Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D: Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem. 2008, 283 (40): 26996-27006. 10.1074/jbc.M801392200.
CAS
PubMed
Google Scholar
Sewelam N, Kazan K, Thomas-Hall SR, Kidd BN, Manners JM, Schenk PM: Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PLoS One 2013, 8(8):e70289.
PubMed Central
CAS
PubMed
Google Scholar
Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S: Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell. 2013, 25 (3): 1126-1142. 10.1105/tpc.112.109074.
PubMed Central
CAS
PubMed
Google Scholar
Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, Vanden Bossche R, De Milde L, Yoshizumi T, Matsui M, Inze D: Ethylene Response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol. 2013, 162 (1): 319-332. 10.1104/pp.113.216341.
PubMed Central
CAS
PubMed
Google Scholar
Merchante C, Alonso JM, Stepanova AN: Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol. 2013, 16 (5): 554-560. 10.1016/j.pbi.2013.08.001.
CAS
PubMed
Google Scholar
Young PR, Lashbrooke JG, Alexandersson E, Jacobson D, Moser C, Velasco R, Vivier MA: The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L. BMC Genomics 2012, 13:243.
PubMed Central
CAS
PubMed
Google Scholar
Lashbrooke JG, Young PR, Dockrall SJ, Vasanth K, Vivier MA: Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biol 2013, 13:156.
PubMed Central
PubMed
Google Scholar
Paterson A, Kassim A, McCallum S, Woodhead M, Smith K, Zait D, Graham J: Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor Appl Genet. 2013, 126 (1): 33-48. 10.1007/s00122-012-1957-9.
CAS
PubMed
Google Scholar
Guillaumie S, Ilg A, Rety S, Brette M, Trossat-Magnin C, Decroocq S, Leon C, Keime C, Ye T, Baltenweck-Guyot R, Claudel P, Bordenave L, Vanbrabant S, Duchene E, Delrot S, Darriet P, Hugueney P, Gomes E: Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality. Plant Physiol. 2013, 162 (2): 604-615. 10.1104/pp.113.218313.
PubMed Central
CAS
PubMed
Google Scholar
Dunlevy JD, Dennis EG, Soole KL, Perkins MV, Davies C, Boss PK: A methyltransferase essential for the methoxypyrazine-derived flavour of wine. Plant J. 2013, 75 (4): 606-617. 10.1111/tpj.12224.
CAS
PubMed
Google Scholar
Dunlevy JD, Soole KL, Perkins MV, Nicholson EL, Maffei SM, Boss PK: Determining the methoxypyrazine biosynthesis variables affected by light exposure and crop level in Cabernet Sauvignon. Am J Enol Vitic. 2013, 64 (4): 450-458. 10.5344/ajev.2013.13070.
CAS
Google Scholar
Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C: Fruit development and ripening. Annu Rev Plant Biol. 2013, 64: 219-241. 10.1146/annurev-arplant-050312-120057.
CAS
PubMed
Google Scholar
Gapper NE, McQuinn RP, Giovannoni JJ: Molecular and genetic regulation of fruit ripening. Plant Mol Biol. 2013, 82 (6): 575-591. 10.1007/s11103-013-0050-3.
CAS
PubMed
Google Scholar
Miao Y, Laun T, Zimmermann P, Zentgraf U: Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol. 2004, 55 (6): 853-867. 10.1007/s11103-005-2142-1.
CAS
PubMed
Google Scholar
Miao Y, Zentgraf U: The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell. 2007, 19 (3): 819-830. 10.1105/tpc.106.042705.
PubMed Central
CAS
PubMed
Google Scholar
Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, Sato F: A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiol. 2013, 162 (2): 991-1005. 10.1104/pp.113.218115.
PubMed Central
CAS
PubMed
Google Scholar
Zentgraf U, Laun T, Miao Y: The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Eur J Cell Biol. 2010, 89 (2–3): 133-137. 10.1016/j.ejcb.2009.10.014.
CAS
PubMed
Google Scholar
Hjelmeland AK, King ES, Ebeler SE, Heymann H: Characterizing the chemical and sensory profiles of United States Cabernet Sauvignon wines and blends. Am J Enol Vitic. 2013, 64 (2): 169-179. 10.5344/ajev.2012.12107.
CAS
Google Scholar
Forde CG, Cox A, Williams ER, Boss PK: Associations between the sensory attributes and volatile composition of cabernet sauvignon wines and the volatile composition of the grapes used for their production. J Agric Food Chem. 2011, 59 (6): 2573-2583. 10.1021/jf103584u.
CAS
PubMed
Google Scholar
Varming C, Petersen MA, Poll L: Comparison of isolation methods for the determination of important aroma compounds in black currant (Ribes nigrum L.) juice, using nasal impact frequency profiling. J Agric Food Chem. 2004, 52 (6): 1647-1652. 10.1021/jf035133t.
CAS
PubMed
Google Scholar
del Castillo ML R, Dobson G: Varietal differences in terpene composition of blackcurrant (Ribes nigrum L) berries by solid phase microextraction/gas chromatography. J Sci Food Agric. 2002, 82 (13): 1510-1515. 10.1002/jsfa.1210.
Google Scholar
Varming C, Andersen ML, Poll L: Volatile monoterpenes in black currant (Ribes nigrum L.) juice: effects of heating and enzymatic treatment by beta-glucosidase. J Agric Food Chem. 2006, 54 (6): 2298-2302. 10.1021/jf051938k.
CAS
PubMed
Google Scholar
Aprea E, Biasioli F, Carlin S, Endrizzi I, Gasperi F: Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography–mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). J Agric Food Chem. 2009, 57 (10): 4011-4018. 10.1021/jf803998c.
CAS
PubMed
Google Scholar
Malowicki SM, Martin R, Qian MC: Volatile composition in raspberry cultivars grown in the Pacific Northwest determined by stir bar sorptive extraction-gas chromatography–mass spectrometry. J Agric Food Chem. 2008, 56 (11): 4128-4133. 10.1021/jf073489p.
CAS
PubMed
Google Scholar
Vázquez-Araújo L, Chambers Iv E, Adhikari K, Carbonell-Barrachina ÁA: Sensory and physicochemical characterization of juices made with pomegranate and blueberries, blackberries, or raspberries. J Food Sci. 2010, 75 (7): S398-S404. 10.1111/j.1750-3841.2010.01779.x.
PubMed
Google Scholar
Vrhovsek U, Lotti C, Masuero D, Carlin S, Weingart G, Mattivi F: Quantitative metabolic profiling of grape, apple and raspberry volatile compounds (VOCs) using a GC/MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2014, 966:132–139.,
CAS
PubMed
Google Scholar
Robinson AL, Adams DO, Boss PK, Heymann H, Solomon PS, Trengove RD: The relationship between sensory attributes and wine composition for Australian Cabernet Sauvignon wines. Aust J Grape Wine Res. 2011, 17 (3): 327-340. 10.1111/j.1755-0238.2011.00155.x.
CAS
Google Scholar
Pineau B, Barbe J-C, Van Leeuwen C, Dubourdieu D: Which impact for β-damascenone on red wines aroma?. J Agric Food Chem. 2007, 55 (10): 4103-4108. 10.1021/jf070120r.
CAS
PubMed
Google Scholar
Lund ST, Peng FY, Nayar T, Reid KE, Schlosser J: Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Plant Mol Biol. 2008, 68 (3): 301-315. 10.1007/s11103-008-9371-z.
CAS
PubMed
Google Scholar
Fasoli M, Dal SS, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M: The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell. 2012, 24 (9): 3489-3505. 10.1105/tpc.112.100230.
PubMed Central
CAS
PubMed
Google Scholar
Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, Hellin P, Oliveros JC, Martinez-Zapater JM: Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS One 2012, 7(6):e39547.
PubMed Central
CAS
PubMed
Google Scholar
Sweetman C, Wong DC, Ford CM, Drew DP: Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 2012, 13:691.
PubMed Central
CAS
PubMed
Google Scholar
Martinez-Lopez LA, Ochoa-Alejo N, Martinez O: Dynamics of the chili pepper transcriptome during fruit development. BMC Genomics 2014, 15(1):143.
PubMed Central
PubMed
Google Scholar
Pastore C, Zenoni S, Tornielli GB, Allegro G, Dal Santo S, Valentini G, Intrieri C, Pezzotti M, Filippetti I: Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening. BMC Genomics 2011, 12:631.
PubMed Central
CAS
PubMed
Google Scholar
Guillaumie S, Fouquet R, Kappel C, Camps C, Terrier N, Moncomble D, Dunlevy JD, Davies C, Boss PK, Delrot S: Transcriptional analysis of late ripening stages of grapevine berry. BMC Plant Biol 2011, 11:165.
PubMed Central
CAS
PubMed
Google Scholar
Merchante C, Vallarino JG, Osorio S, Araguez I, Villarreal N, Ariza MT, Martinez GA, Medina-Escobar N, Civello MP, Fernie AR, Botella MA, Valpuesta V: Ethylene is involved in strawberry fruit ripening in an organ-specific manner. J Exp Bot. 2013, 64 (14): 4421-4439. 10.1093/jxb/ert257.
PubMed Central
CAS
PubMed
Google Scholar
Aizat WM, Able JA, Stangoulis JCR, Able AJ: Proteomic analysis during capsicum ripening reveals differential expression of ACC oxidase isoform 4 and other candidates. Funct Plant Biol. 2013, 40 (11): 1115-1128. 10.1071/FP12330.
CAS
Google Scholar
Bradford KJ, Trewavas AJ: Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiol. 1994, 105 (4): 1029-1036.
PubMed Central
CAS
PubMed
Google Scholar
Lee S, Chung EJ, Joung YH, Choi D: Non-climacteric fruit ripening in pepper: increased transcription of EIL-like genes normally regulated by ethylene. Funct Integr Genomics. 2010, 10 (1): 135-146. 10.1007/s10142-009-0136-9.
CAS
PubMed
Google Scholar
Chervin C, Deluc L: Ethylene signalling receptors and transcription factors over the grape berry development: gene expression profiling. Vitis. 2010, 49: 129-136.
CAS
Google Scholar
Koch A, Doyle CL, Matthews MA, Williams LE, Ebeler SE: 2-Methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype. Phytochem. 2010, 71 (17–18): 2190-2198. 10.1016/j.phytochem.2010.09.006.
CAS
Google Scholar
Chapman DM, Thorngate JH, Matthews MA, Guinard JX, Ebeler SE: Yield effects on 2-methoxy-3-isobutylpyrazine concentration in cabernet sauvignon using a solid phase microextraction gas chromatography/mass spectrometry method. J Agric Food Chem. 2004, 52 (17): 5431-5435. 10.1021/jf0400617.
CAS
PubMed
Google Scholar
Tattersall EAR, Ergul A, AlKayal F, Deluc L, Cushman JC, Cramer GR: Comparison of methods for isolating high-quality RNA from leaves of grapevine. Am J Enol Vitic. 2005, 56: 400-406.
CAS
Google Scholar
Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:113.
PubMed Central
PubMed
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32 (5): 1792-1797. 10.1093/nar/gkh340.
PubMed Central
CAS
PubMed
Google Scholar
Aw T, Schlauch K, Keeling CI, Young S, Bearfield JC, Blomquist GJ, Tittiger C: Functional genomics of mountain pine beetle (Dendroctonus ponderosae) midguts and fat bodies. BMC Genomics 2010, 11:215.
PubMed Central
PubMed
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat. 2003, 4: 249-264. 10.1093/biostatistics/4.2.249.
Google Scholar
Gautier L, Cope L, Bolstad BM, Irizarry RA: Affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004, 20: 307-315. 10.1093/bioinformatics/btg405.
CAS
PubMed
Google Scholar
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2009, 2(84):ra45.
PubMed
Google Scholar
Harwell MR, Rubinstein EN, Hayes WS, Olds CC: Summarizing Monte Carlo results in methodological research: the one- and two-factor fixed effects ANOVA cases. J Educ Stat. 1992, 17: 315-339.
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215 (3): 403-410. 10.1016/S0022-2836(05)80360-2.
CAS
PubMed
Google Scholar
SantaLucia J, Hicks D: The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct. 2004, 33: 415-440. 10.1146/annurev.biophys.32.110601.141800.
CAS
PubMed
Google Scholar
Rouillard JM, Zuker M, Gulari E: OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res. 2003, 31 (12): 3057-3062. 10.1093/nar/gkg426.
PubMed Central
CAS
PubMed
Google Scholar
Dal Santo S, Vannozzi A, Tornielli GB, Fasoli M, Venturini L, Pezzotti M, Zenoni S: Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics. PLoS One 2013, 8(4):e62206.
PubMed Central
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13 (11): 2498-2504. 10.1101/gr.1239303.
PubMed Central
CAS
PubMed
Google Scholar
Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J: TM4 microarray software suite. Methods Enzymol. 2006, 411: 134-193. 10.1016/S0076-6879(06)11009-5.
CAS
PubMed
Google Scholar