Marschner H: Mineral Nutrition of Higher Plants London: Academic Press Limited; 1995.
Google Scholar
Barker AV, Bryson GM: Nitrogen. Handbook of Plant nutrition. Edited by: Barker AV, Pilbeam DJ.Boca Raton: CRC Press; 2007: 21-50.
Google Scholar
Stitt M: Nitrate regulation of metabolism and growth. Curr Opin Plant Biol. 1999, 2: 178-186. 10.1016/S1369-5266(99)80033-8.
Article
PubMed
CAS
Google Scholar
Brouquisse R, Masclaux C, Feller U, Raymond P: Protein hydrolysis and nitrogen remobilisation in plant life and senescence. Plant Nitrogen. Edited by: Lea PJ, Morot-Gaudry JF.Hidelberg: Springer-Verlag Berlin Hidelberg; 2001: 275-293.
Chapter
Google Scholar
Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Sheible WR, Krapp A: Steps towards an integrated view of nitrogen metabolism. J Exp Bot. 2002, 53: 959-970. 10.1093/jexbot/53.370.959.
Article
PubMed
CAS
Google Scholar
Miller AJ, Cramer MD: Root nitrogen acquisition and assimilation. Plant Soil. 2004, 274: 1-36. 10.1007/s11104-004-0965-1.
Article
Google Scholar
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M: Genome-wide programming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 2004, 136: 2483-2499. 10.1104/pp.104.047019.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jackson LE, Burger M, Cavagnaro TR: Roots, nitrogen transformation and ecosystem services. Annu Rev Plant Biol. 2008, 59: 341-63. 10.1146/annurev.arplant.59.032607.092932.
Article
PubMed
CAS
Google Scholar
Lawlor DW, Lemaire G, Gastal F: Nitrogen, plant growth and crop yield. Plant Nitrogen. Edited by: Lea PJ, Morot-Gaudry JF. Hidelberg: Springer-Verlag Berlin Hidelberg; 2001: 343-367.
Chapter
Google Scholar
Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A: Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol. 2001, 125: 1258-1270. 10.1104/pp.125.3.1258.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hagedorn F, Bucher JB, Schleppi P: Contrasting dynamics of dissolved inorganic and organic nitrogen in soil and surface waters of forested catchments with Gleysols. Geoderma. 2001, 100: 173-192. 10.1016/S0016-7061(00)00085-9.
Article
CAS
Google Scholar
Owen AG, Jones DL: Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem. 2001, 33: 651-657. 10.1016/S0038-0717(00)00209-1.
Article
CAS
Google Scholar
Orsel M, Filleur S, Fraisier V, Daniel-Vedele F: Nitrate transport in Plants: which gene and which control?. J Exp Bot. 2002, 53: 825-833. 10.1093/jexbot/53.370.825.
Article
PubMed
CAS
Google Scholar
Ullrich CI, Novacky AJ: Extra and intracellular pH and membrane potential changes by K+, Cl-, H2PO4 and NO3 uptake and fusicoccin in root hairs of Limnobium stoloniferum . Plant Physiol. 1990, 94: 1561-1567. 10.1104/pp.94.4.1561.
Article
PubMed
CAS
PubMed Central
Google Scholar
McClure PR, Kochian LV, Spanwick RM, Shaff JE: Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on the membrane potential. Plant Physiol. 1990, 93: 281-289. 10.1104/pp.93.1.281.
Article
PubMed
CAS
PubMed Central
Google Scholar
Meharg AA, Blatt MR: NO3- transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. J Membrane Biol. 1995, 145: 49-66. 10.1007/BF00233306.
Article
CAS
Google Scholar
Crawford NM, Glass ADM: Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 1998, 3: 389-395. 10.1016/S1360-1385(98)01311-9.
Article
Google Scholar
Huang NC, Liu KH, Lo HJ, Tsay YF: Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell. 1999, 11: 1381-1392. 10.1105/tpc.11.8.1381.
Article
PubMed
CAS
PubMed Central
Google Scholar
Espen L, Nocito FF, Cocucci M: Effect of NO3- transport and reduction on intracellular pH: an in vivo NMR study in maize roots. J Exp Bot. 2004, 55: 2053-2061. 10.1093/jxb/erh231.
Article
PubMed
CAS
Google Scholar
Palmgren MG: Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol. 2001, 52: 817-845. 10.1146/annurev.arplant.52.1.817.
Article
PubMed
CAS
Google Scholar
Santi S, Locci G, Monte R, Pinton R, Varanini Z: Induction of nitrate uptake in maize roots: expression of putative high affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot. 2003, 54: 1851-1864. 10.1093/jxb/erg208.
Article
PubMed
CAS
Google Scholar
Sondergaard TE, Schulz A, Palmgren MG: Energization of transport processes in plants. roles of the plasma membrane H1-ATPase. Plant Physiol. 2004, 136: 2475-2482. 10.1104/pp.104.048231.
Article
PubMed
CAS
PubMed Central
Google Scholar
Oaks A, Hirel B: Nitrogen metabolism in roots. Annu Rev Plant Physiol. 1985, 36: 345-365. 10.1146/annurev.pp.36.060185.002021.
Article
CAS
Google Scholar
Meyer C, Stitt M: Nitrate reduction and signalling. In Plant Nitrogen Edited by: Lea PJ, Morot-Gaudry JF. Hidelberg: Springer-Verlag Berlin Hidelberg; 2001:37-59.
Chapter
Google Scholar
Hirel B, Lea PJ: Ammonia assimilation. In Plant Nitrogen Edited by:Lea PJ, Morot-Gaudry JF. Hidelberg: Springer-Verlag Berlin Hidelberg;2001:79-99.
Chapter
Google Scholar
Crawford NM: Nitrate: nutrient and signal for plant growth. Plant Cell. 1995, 7: 859-868. 10.1105/tpc.7.7.859.
Article
PubMed
CAS
PubMed Central
Google Scholar
Paul MJ, Foyer CH: Sink regulation of photosynthesis. J Exp Bot. 2001, 52: 1383-1400. 10.1093/jexbot/52.360.1383.
Article
PubMed
CAS
Google Scholar
Forde BG: Local and long-range signalling pathways regulating plant responses to nitrate. Annu Rev Plant Biol. 2002, 53: 203-224. 10.1146/annurev.arplant.53.100301.135256.
Article
PubMed
CAS
Google Scholar
Wang R, Guegler K, LaBrie ST, Crawford NM: Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell. 2000, 12: 1491-1509. 10.1105/tpc.12.8.1491.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rossignol M: Analysis of the plant proteome. Curr Opin Biotech. 2001, 12: 131-134. 10.1016/S0958-1669(00)00186-5.
Article
PubMed
CAS
Google Scholar
Roberts JKM: Proteomics and future generation of plant molecular biologists. Plant Mol Biol. 2002, 48: 143-154. 10.1023/A:1013736322130.
Article
PubMed
CAS
Google Scholar
Yarmush ML, Jayaraman A: Advances in proteomic technologies. Annu Rev Biomed Eng. 2002, 4: 349-373. 10.1146/annurev.bioeng.4.020702.153443.
Article
PubMed
CAS
Google Scholar
Patterson SD, Aebersold RH: Proteomics: the first decade and beyond. Nat Genet Suppl. 2003, 33 (Suppl): 311-323. 10.1038/ng1106.
Article
CAS
Google Scholar
Jorrín-Novo JV, Maldonato AM, EchevarríaZomeòo S, Valledor L, Castllejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redonado I: Plant Proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfil MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics. 2009, 72: 285-314. 10.1016/j.jprot.2009.01.026.
Article
PubMed
Google Scholar
Lawrence CJ, Dong Q, Mary L, Polacco ML, Seigfried TE, Brendel V: MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res. 2004, 32: D393-D397. 10.1093/nar/gkh011.
Article
PubMed
CAS
PubMed Central
Google Scholar
Porubleva L, Velden KV, Kothari S, David J, Oliver DJ, Parag R, Chitnis PR: The proteome of maize leaves: Use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass Fingerprints. Electrophoresis. 2001, 22: 1724-1738. 10.1002/1522-2683(200105)22:9<1724::AID-ELPS1724>3.0.CO;2-2.
Article
PubMed
CAS
Google Scholar
Majeran W, Cai Y, Sun Q, van Wijk KJ: Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell. 2005, 17: 3111-3140. 10.1105/tpc.105.035519.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk LA, Lamkemeyer T, Fladerer C, Madlung J, Barbazuk B, Nordheim A, Nettleton D, Schnable PS, Hochholdinger F: Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol. 2007, 145: 575-588. 10.1104/pp.107.106203.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bahrman N, Le Gouls J, Negroni L, Amilhat L, Leroy P, Laìné AL, Jaminon O: Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics. 2004, 4: 709-719. 10.1002/pmic.200300571.
Article
PubMed
CAS
Google Scholar
Bahrman N, Gouy A, Devienne-Barret F, Hirel B, Vedele F, Le Gouis J: Differential change in root protein pattern of two wheat varieties under high and low nitrogen nutrition levels. Plant Sci. 2005, 168: 81-87. 10.1016/j.plantsci.2004.07.035.
Article
CAS
Google Scholar
Foyer CH, Ferrario-Méry S, Noctor G: Interactions between carbon and nitrogen metabolism. Plant Nitrogen. Edited by: Lea PJ, Morot-Gaudry JF. Hidelberg: Springer-Verlag Berlin Hidelberg; 2001: 237-254.
Chapter
Google Scholar
Sivasankar S, Rothstein S, Oaks A: Regulation of the accumulation and reduction of nitrate by nitrogen and carbon metabolites in maize seedlings. Plant Physiol. 1997, 114: 583-589.
PubMed
CAS
PubMed Central
Google Scholar
Klein D, Morcuende R, Stitt M, Krapp A: Regulation of nitrate reductase expression in leaves by nitrate and nitrogen metabolism is completely overridden when sugars fall below a critical level. Plant Cell Environ. 2000, 23: 863-871. 10.1046/j.1365-3040.2000.00593.x.
Article
CAS
Google Scholar
Huppe HC, Turpin DH: Appearance of novel glucose-6-phosphate dehydrogenase isoforms in Chlamydomonas reinhardtii during growth on nitrate. Plant Physiol. 1996, 110: 1431-1433.
PubMed
CAS
PubMed Central
Google Scholar
Wang YH, Garvin DF, Kochian LV: Nitrate-induce genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 2001, 127: 345-359. 10.1104/pp.127.1.345.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li M, Villemur R, Hussey PJ, Silflow CD, Gantt JS, Snustad DP: Differential expression of six glutamine synthetase genes in Zea mays . Plant Mol Biol. 1993, 23: 401-407. 10.1007/BF00029015.
Article
PubMed
CAS
Google Scholar
Sakakibara H, Kawabata S, Hase T, Sugiyama T: Differential effects of nitrate and light on the expression of glutamine synthetases and ferredoxin-dependent glutamate synthase in maize. Plant Cell Physiol. 1992, 33: 1193-1198.
CAS
Google Scholar
Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM: Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot. 2002, 53: 103-110. 10.1093/jexbot/53.366.103.
Article
PubMed
CAS
Google Scholar
Igamberdiev AU, Bycova NV, Hill RD: Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta. 2006, 223: 1033-1040. 10.1007/s00425-005-0146-3.
Article
PubMed
CAS
Google Scholar
Lamattina L, Garcìa-Mata C, Pagnussat G: Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol. 2003, 54: 109-136. 10.1146/annurev.arplant.54.031902.134752.
Article
PubMed
CAS
Google Scholar
Stöhr C, Stremlau S: Formation and possible roles of nitric oxide in plant roots. J Exp Bot. 2006, 57: 463-470. 10.1093/jxb/erj058.
Article
PubMed
Google Scholar
Zhao DY, Tian QY, Li LH, Zhang WH: Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays . Ann Bot. 2007, 100: 497-503. 10.1093/aob/mcm142.
Article
PubMed
CAS
PubMed Central
Google Scholar
Peschke VM, Sachs MM: Characterization and expression of transcripts induced by oxygen deprivation in maize (Zea mays L.). Plant Physiol. 1994, 104: 387-394. 10.1104/pp.104.2.387.
Article
PubMed
CAS
PubMed Central
Google Scholar
Igamberdiev AU, Hill RD: Nitrate NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot. 2004, 408: 2473-2482. 10.1093/jxb/erh272.
Article
Google Scholar
Fritz C, Palacios-Rojas N, Fell R, Stitt M: Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J. 2006, 46: 533-548. 10.1111/j.1365-313X.2006.02715.x.
Article
PubMed
CAS
Google Scholar
Kingston-Smith AH, Bollard AL, Minchin FR: Stress-induced changes in protease composition are determined by nitrogen supply in non-nodulating white clover. J Exp Bot. 2005, 56: 745-753. 10.1093/jxb/eri049.
Article
PubMed
CAS
Google Scholar
Simões I, Faro C: Structure and function of plant aspartic proteinases. Eur J Biochem. 2004, 271: 2067-2075. 10.1111/j.1432-1033.2004.04136.x.
Article
PubMed
Google Scholar
Askura T, Watanabe H, Abe K, Arai S: Rice aspartic proteinases, oryzasin, expressed during seed ripening and germination, has a gene organization distinct from those of animal and microbial aspartic proteinases. Eur J Biochem. 1995, 232: 77-83. 10.1111/j.1432-1033.1995.tb20783.x.
Article
Google Scholar
Raven JA: Biochemical disposal of excess H+ in growing plants?. New Phytol. 1986, 104: 175-206. 10.1111/j.1469-8137.1986.tb00644.x.
Article
CAS
Google Scholar
Sakano K: Revision of biochemical pH-stat: involvement of alternative pathway metabolisms. Plant Cell Physiol. 1998, 39: 467-473.
Article
CAS
Google Scholar
Britto DT, Kronzucker HJ: Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms. Plant Cell Environ. 2005, 28: 1396-1409. 10.1111/j.1365-3040.2005.01372.x.
Article
CAS
Google Scholar
Uhrig RG, She YM, Leach CA, Plaxton WC: Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds. JBC. 2008, 283: 29650-29657. 10.1074/jbc.M806102200.
Article
CAS
Google Scholar
de Vetten NC, Ferl RJ: Two genes encoding GF14 (14-3-3) proteins in Zea mays. Structure, expression, and potential regulation by G-box-binding complex. Plant Physiol. 1994, 106: 1593-1604. 10.1104/pp.106.4.1593.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bihn EA, Paul AL, Wang SW, Erdos GW, Ferl RJ: Localization of 14-3-3 proteins in the nuclei of Arabidopsis and maize. Plant J. 1997, 12: 1439-1445. 10.1046/j.1365-313x.1997.12061439.x.
Article
PubMed
CAS
Google Scholar
Roberts MR: Regulatory 14-3-3 protein-protein interactions in plant cells. Curr Opin Plant Biol. 2000, 3: 400-405. 10.1016/S1369-5266(00)00103-5.
Article
PubMed
CAS
Google Scholar
Bachmann M, Huber JL, Athwal GS, Wu K, Ferl RJ, Huber SC: 14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases. FEBS Lett. 1996, 398: 26-30. 10.1016/S0014-5793(96)01188-X.
Article
PubMed
CAS
Google Scholar
Ikeda Y, Koizumi N, Kusano T, Sano H: Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK-4-phosphorylated nitrate reductase. JBC. 2000, 275: 31695-31700. 10.1074/jbc.M004892200.
Article
CAS
Google Scholar
Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, Azem A, Viitenen PV: Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. JBC. 2000, 275: 11829-11835. 10.1074/jbc.275.16.11829.
Article
CAS
Google Scholar
Averill RH, Bailey-Serres J, Kruger NJ: Co-operation between cytosolic and plastidic oxidative pentose phosphate pathways revealed by 6-phosphogluconate dehydrogenase-deficient genotypes of maize. Plant J. 1998, 14: 449-457. 10.1046/j.1365-313X.1998.00143.x.
Article
CAS
Google Scholar
Malkin R, Niyogi K: Photosynthesis. Biochemistry and Molecular Biology of Plants. Edited by: Buchanan B, Gruissem W, Jones R.American Society of Plant Physiologists Rockville; 2000:568-628.
Google Scholar
Rapala-Kozik M, Kowalaska E, Ostrowska K: Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot. 2008, 59: 4133-4143. 10.1093/jxb/ern253.
Article
PubMed
CAS
Google Scholar
Edwards GE, Franceschi VR, Voznesenskaya EV: Single-cell C4 phothosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol. 2004, 55: 173-196. 10.1146/annurev.arplant.55.031903.141725.
Article
PubMed
CAS
Google Scholar
Ueno Y, Imanari E, Emura J, Yoshizawa-Kumagaye K, Nakajiama K, Inami K, Shiba T, Sakakibara H, Sugiyama T, Izui K: Immunological analysis of the phosphorylation state of maize C4-form phosphoenolpyruvate carboxylase with specific antibodies raised against a synthetic phosphorylated peptide. Plant J. 2000, 21: 17-26. 10.1046/j.1365-313x.2000.00649.x.
Article
PubMed
CAS
Google Scholar
Izui K, Matsumura H, Furumoto T, Kai Y: Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol. 2004, 55: 69-84. 10.1146/annurev.arplant.55.031903.141619.
Article
PubMed
CAS
Google Scholar
Nemchenko A, Kunze S, Feussner I, Kolomietes M: Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. J Exp Bot. 2006, 57: 3767-3779. 10.1093/jxb/erl137.
Article
PubMed
CAS
Google Scholar
Feussner I, Bachmann A, Höhne M, Kindl H: All three acyl moieties of trilinolein are efficiently oxygenated by recombinant His-tagged lipid body lipoxygenase in vitro . FEBS Lett. 1998, 431: 433-436. 10.1016/S0014-5793(98)00808-4.
Article
PubMed
CAS
Google Scholar
James HE, Robinson C: Nucleotide sequence of cDNA encoding the precursor of the 23 kDa protein of the photosynthetic oxygen-evolving complex from wheat. Plant Mol Biol. 1991, 17: 179-182. 10.1007/BF00036827.
Article
PubMed
CAS
Google Scholar
Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K, Harada Y: Characterization of a cDNA clone encoding 23 kDa polypeptide of the oxygen-evolving complex of photosystem II in rice. Plant Cell Physiol. 1995, 36: 1677-1682.
PubMed
CAS
Google Scholar
Sourosa M, Aro EM: Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. Photosynth Res. 2007, 93: 89-100. 10.1007/s11120-007-9154-4.
Article
Google Scholar
Ifuku K, Yamamoto Y, Ono T, Ishihara S, Sato F: PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol. 2005, 139: 1175-1184. 10.1104/pp.105.068643.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gaude N, Bréhélin C, Tischendorf G, Kessler F, Dörmann P: Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J. 2007, 49: 729-739. 10.1111/j.1365-313X.2006.02992.x.
Article
PubMed
CAS
Google Scholar
Sakurai I, Mizusawa N, Wada H, Sato N: Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiol. 2007, 145: 1361-1370. 10.1104/pp.107.106781.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cataldo DA, Haroon M, Schrader LE, Youngs VL: Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal. 1975, 6: 71-80. 10.1080/00103627509366547.
Article
CAS
Google Scholar
Ferrario-Méry S, Valadier MH, Foyer CH: Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiol. 1998, 117: 293-302. 10.1104/pp.117.1.293.
Article
PubMed
PubMed Central
Google Scholar
Nelson NA: A photometric adaptation of the Somogy method for the determination of glucose. JBC. 1944, 153: 375-384.
CAS
Google Scholar
Moore S, Stein WH: A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. JBC. 1954, 211: 907-913.
CAS
Google Scholar
Martínez-Garcia JF, Monte E, Quall PH: A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J. 1999, 20: 251-257. 10.1046/j.1365-313x.1999.00579.x.
Article
PubMed
Google Scholar
Lichtenthaler HK: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Met Enzymol. 1987, 148: 350-382. 10.1016/0076-6879(87)48036-1 .
Article
CAS
Google Scholar
Heat RL, Packer K: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968, 125: 189-198. 10.1016/0003-9861(68)90654-1.
Article
Google Scholar
Krause GH, Weis E: Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol. 1991, 42: 313-349. 10.1146/annurev.pp.42.060191.001525.
Article
CAS
Google Scholar
Genty B, Briantais JM, Baker NR: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA. 1989, 990: 87-92.
CAS
Google Scholar
Hurkman WJ, Tanaka CK: Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 1986, 81: 802-806. 10.1104/pp.81.3.802.
Article
PubMed
CAS
PubMed Central
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage. T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.
Article
PubMed
CAS
Google Scholar
Neuhoff V, Arold N, Taube D, Ehrhardt W: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988, 9: 255-262. 10.1002/elps.1150090603.
Article
PubMed
CAS
Google Scholar
Magni C, Scarafoni A, Herndl A, Sessa F, Prinsi B, Espen L, Duranti M: Combined electrophoretic approaches for the study of white lupin mature seed storage proteome. Phytochemistry. 2007, 68: 997-1007. 10.1016/j.phytochem.2007.01.003.
Article
PubMed
CAS
Google Scholar
National Center for Biotechnology Information. [http://www.ncbi.nlm.nih.gov/]
Eng JK, McCormack AL, Yates JR: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994, 5: 976-989. 10.1016/1044-0305(94)80016-2.
Article
PubMed
CAS
Google Scholar
Mackey AJ, Haystead TAJ, Pearson WR: Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Mol Cell Proteomics. 2002, 1: 139-147. 10.1074/mcp.M100004-MCP200.
Article
PubMed
CAS
Google Scholar
ExPASy Proteomics Server. [http://www.expasy.org/]