Cao H, Bowling SA, Gordon AS, Dong X: Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell. 1994, 6: 1583-1592. 10.1105/tpc.6.11.1583.
Article
PubMed
CAS
PubMed Central
Google Scholar
Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, et al: A central role of salicylic acid in plant disease resistance. Science. 1994, 266: 1247-1250. 10.1126/science.266.5188.1247.
Article
PubMed
CAS
Google Scholar
Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner H-Y, Johnson J, Delaney TP, Jesse T, Vos P, et al: The Arabidopsis NIM1 protein shows homology to the mammalian transcript factor inhibitor IκB. Plant Cell. 1997, 9: 425-439. 10.1105/tpc.9.3.425.
PubMed
CAS
PubMed Central
Google Scholar
Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J: Acquired resistance in Arabidopsis. Plant Cell. 1992, 4: 645-656. 10.1105/tpc.4.6.645.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yalpani N, Raskin I: Salicylic acid: a systemic signal in induced plant disease resistance. Trends Microbiol. 1993, 1 (3): 88-92. 10.1016/0966-842X(93)90113-6.
Article
PubMed
CAS
Google Scholar
White RF: Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology. 1979, 99: 410-412. 10.1016/0042-6822(79)90019-9.
Article
PubMed
CAS
Google Scholar
Ryals J, Uknes S, Ward E: Systemic acquired resistance. Plant Physiol. 1994, 104 (4): 1109-1112.
PubMed
CAS
PubMed Central
Google Scholar
Klessig DF, Vlot AC, Dempsey DA: Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009, 47: 177-206. 10.1146/annurev.phyto.050908.135202.
Article
PubMed
Google Scholar
Malamy J, Carr JP, Klessig DF, Raskin I: Salicylic acid: a likley endogenous signal in the resistance response of tobacco to viral infection. Science. 1990, 250: 1002-1004. 10.1126/science.250.4983.1002.
Article
PubMed
CAS
Google Scholar
Shah J: The salicylic acid loop in plant defense. Curr Opin Plant Biol. 2003, 6 (4): 365-371. 10.1016/S1369-5266(03)00058-X.
Article
PubMed
CAS
Google Scholar
Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J: Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 1993, 261: 754-756. 10.1126/science.261.5122.754.
Article
PubMed
CAS
Google Scholar
Hajimorad MR, Hill JH: Rsv1-mediated resistance against soybean mosaic virus-N is hypersensitive response-independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism. Mol Plant Microbe Interact. 2001, 14 (5): 587-598. 10.1094/MPMI.2001.14.5.587.
Article
PubMed
CAS
Google Scholar
Shah J, Kachroo P, Klessig DF: The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell. 1999, 11: 191-206. 10.1105/tpc.11.2.191.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cao H, Glazebrook J, Clarke JD, Volko S, Dong X: The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 1997, 88: 57-63. 10.1016/S0092-8674(00)81858-9.
Article
PubMed
CAS
Google Scholar
Aravind L, Koonin EV: Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol. 1999, 285 (4): 1353-1361. 10.1006/jmbi.1998.2394.
Article
PubMed
CAS
Google Scholar
Kinkema M, Fan W, Dong X: Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell. 2000, 12 (12): 2339-2350. 10.1105/tpc.12.12.2339.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mou Z, Fan W, Dong X: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell. 2003, 113 (7): 935-944. 10.1016/S0092-8674(03)00429-X.
Article
PubMed
CAS
Google Scholar
Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA: Phylogenetic perspectives in innate immunity. Science. 1999, 284 (5418): 1313-1318. 10.1126/science.284.5418.1313.
Article
PubMed
CAS
Google Scholar
Vallad GE, Goodman RM: Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 2004, 44: 1920-1934.
Article
Google Scholar
Cao H, Li X, Dong X: Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA. 1998, 95: 6531-6536. 10.1073/pnas.95.11.6531.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC: Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J. 2001, 27 (2): 101-113. 10.1046/j.1365-313x.2001.01070.x.
Article
PubMed
CAS
Google Scholar
Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC: Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact. 2005, 18 (6): 511-520. 10.1094/MPMI-18-0511.
Article
PubMed
CAS
Google Scholar
Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS, Black L, Green SK, Wang JF, Cheng CP: Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res. 2004, 13 (6): 567-581. 10.1007/s11248-004-2375-9.
Article
PubMed
CAS
Google Scholar
Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J: Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact. 2006, 19 (2): 123-129. 10.1094/MPMI-19-0123.
Article
PubMed
CAS
Google Scholar
Quilis J, Penas G, Messeguer J, Brugidou C, San Segundo B: The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant Microbe Interact. 2008, 21 (9): 1215-1231. 10.1094/MPMI-21-9-1215.
Article
PubMed
CAS
Google Scholar
Wrather JA, Koenning SR: Estimates of disease effects on soybean yields in the United States 2003 to 2005. J Nematology. 2006, 38: 173-180.
Google Scholar
Wrather JA, Elrod JM: Apparent systemic effect of Colletotrichum truncatum and C. lagenarium on the interaction between soybean and C. truncatum. Phytopathology. 1990, 80: 472-447. 10.1094/Phyto-80-472.
Article
Google Scholar
Gao H, Narayanan NN, Ellison L, Bhattacharyya MK: Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean. Mol Plant Microbe Interact. 2005, 18 (10): 1035-1045. 10.1094/MPMI-18-1035.
Article
PubMed
CAS
Google Scholar
Bhattacharyya MK, Narayanan NN, Gao H, Santra DK, Salimath SS, Kasuga T, Liu Y, Espinosa B, Ellison L, Marek L, et al: Identification of a large cluster of coiled coil-nucleotide binding site-leucine rich repeat-type genes from the Rps1 region containing Phytophthora resistance genes in soybean. Theor Appl Genet. 2005, 111 (1): 75-86. 10.1007/s00122-005-1993-9.
Article
PubMed
CAS
Google Scholar
Rochon A, Boyle P, Wignes T, Fobert PR, Despres C: The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Plant Cell. 2006, 18 (12): 3670-3685. 10.1105/tpc.106.046953.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lazarovits G, Stössel P, Ward EWB: Age-related changes in specificity and glyceollin production in the hypocotyl reaction of soybeans to Phytophthora megasperma var. sojae. Phytopathology. 1981, 71: 94-97. 10.1094/Phyto-71-94.
Article
CAS
Google Scholar
Bhattacharyya MK, Ward EWB: Expression of gene-specific and age-related resistance and the accumulation of glyceollin in soybean leaves infected with Phytophthora megasperma f.sp. glycinea. Physiol Mol Plant Pathol. 1986, 29: 105-113.
Article
CAS
Google Scholar
Kus JV, Zaton K, Sarkar R, Cameron RK: Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell. 2002, 14 (2): 479-490. 10.1105/tpc.010481.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dong X: Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol. 2001, 4 (4): 309-314. 10.1016/S1369-5266(00)00178-3.
Article
PubMed
CAS
Google Scholar
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X: Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science. 2008, 321 (5891): 952-956. 10.1126/science.1156970.
Article
PubMed
CAS
Google Scholar
Fu DQ, Ghabrial S, Kachroo A: GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant Microbe Interact. 2009, 22 (1): 86-95. 10.1094/MPMI-22-1-0086.
Article
PubMed
CAS
Google Scholar
Schmitthenner AF, Hobe M, Bhat RG: Phytophthora sojae races in Ohio over a 10-year interval. Plant Dis. 1994, 78: 269-276.
Article
Google Scholar
King EO, Ward MK, Raney DE: Two simple media for demonstration of phycocyanin and fluorescin. J Lab Clin Med. 1954, 44: 301-307.
PubMed
CAS
Google Scholar
May R, Volksch B, Kampmann G: Antagonistic activities of epiphytic bacteria from soybean leaves against Pseudomonas syringae pv. glycinea in vitro and in planta. Microb Ecol. 1997, 34 (2): 118-124. 10.1007/s002489900041.
Article
PubMed
Google Scholar
Sandhu D, Gao H, Cianzio S, Bhattacharyya MK: Deletion of a disease resistance nucleotide-binding-site leucine-rich-repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics. 2004, 168 (4): 2157-2167. 10.1534/genetics.104.032037.
Article
PubMed
CAS
PubMed Central
Google Scholar
Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983, 132 (1): 6-13. 10.1016/0003-2697(83)90418-9.
Article
PubMed
CAS
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A laboratoryManual. 2nd edition. New York, USA: Cold Spring HarborLaboratory Press; 1989.
Google Scholar
Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16: 735-743. 10.1046/j.1365-313x.1998.00343.x.
Article
PubMed
CAS
Google Scholar
Daniels MJBC, Turner PC, Cleary WG, Sawczyc MK: Isolation of mutants of Xanthomonas campestris pathovar campestris showing altered pathogenicity. J Gen Microbiol. 1984, 130: 2447-2455.
Google Scholar
Swanson J, Kearney B, Dahlbeck D, Staskawicz B: Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race-change mutants. Mol Plant Microbe Interact. 1988, 1 (1): 5-9.
Article
Google Scholar
Iturriaga G, Jefferson RA, Bevan MW: Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell. 1989, 1: 381-390. 10.1105/tpc.1.3.381.
Article
PubMed
CAS
PubMed Central
Google Scholar
Haas JH, Buzzell RI: New races 5 and 6 of Phytophthora megasperma var. sojae and differential reactions of soybean cultivars for races 1 and 6. Phytopathology. 1976, 66: 1361-1362. 10.1094/Phyto-66-1361.
Article
Google Scholar
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA,Struhl K, (eds): Current protocol in molecular biology. NewYork, USA: John Wiley & Sons; 1987.
Google Scholar
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I: VISTA:computational tools for comparative genomics. Nucleic AcidsRes 2004:W273-279. 10.1093/nar/gkh458. 32 Web Server.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23 (21): 2947-2948. 10.1093/bioinformatics/btm404.
Article
PubMed
CAS
Google Scholar