Martin C, Smith AM: Starch Biosynthesis. Plant Cell. 1995, 7 (7): 971-985.
Article
PubMed
PubMed Central
Google Scholar
Buleon A, Colonna P, Planchot V, Ball S: Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules. 1998, 23 (2): 85-112.
Article
PubMed
Google Scholar
Morell MK, Myers AM: Towards the rational design of cereal starches. Current Opinion in Plant Biology. 2005, 8 (2): 204-210.
Article
PubMed
Google Scholar
Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA: Starch production and industrial use. J Sci Food Agr. 1998, 77 (3): 289-311.
Article
Google Scholar
Tomasik P, Schilling CH: Chemical modification of starch. Advances in Carbohydrate Chemistry and Biochemistry. 2004, 59: 175-403.
Article
PubMed
Google Scholar
Ral JP, Derelle E, Ferraz C, Wattebled F, Farinas B, Corellou F, Buleon A, Slomianny MC, Delvalle D, d'Hulst C, et al: Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri(1[w]). Plant Physiol. 2004, 136 (2): 3333-3340.
Article
PubMed
PubMed Central
Google Scholar
Jenkins JPJ, Cameron RE, Donald AM: A Universal Feature in the Structure of Starch Granules from Different Botanical Sources. Starch-Starke. 1993, 45 (12): 417-420.
Article
Google Scholar
Ball SG, Morell MK: From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology. 2003, 54: 207-233.
Article
PubMed
Google Scholar
Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y: Function and characterization of starch synthase I using mutants in rice. Plant Physiology. 2006, 140 (3): 1070-1084.
Article
PubMed
PubMed Central
Google Scholar
Tetlow IJ: Understanding storage starch biosynthesis in plants: a means to quality improvement. Canadian Journal of Botany-Revue Canadienne De Botanique. 2006, 84 (8): 1167-1185.
Google Scholar
Roldan I, Wattebled F, Lucas MM, Delvalle D, Planchot V, Jimenez S, Perez R, Ball S, D'Hulst C, Merida A: The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. 2007, 49 (3): 492-504.
Article
PubMed
Google Scholar
Edwards A, Fulton DC, Hylton CM, Jobling SA, Gidley M, Rossner U, Martin C, Smith AM: A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J. 1999, 17 (3): 251-261.
Article
Google Scholar
Lloyd JR, Landschutze V, Kossmann J: Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin. Biochemical Journal. 1999, 338: 515-521.
Article
PubMed
PubMed Central
Google Scholar
Denyer K, Waite D, Edwards A, Martin C, Smith AM: Interaction with amylopectin influences the ability of granule-bound starch synthase I to elongate malto-oligosaccharides. Biochemical Journal. 1999, 342: 647-653.
Article
PubMed
PubMed Central
Google Scholar
Edwards A, Borthakur A, Bornemann S, Venail L, Denyer K, Waite D, Fulton D, Smith A, Martin C: Specificity of starch synthase isoforms from potato. European Journal of Biochemistry. 1999, 266 (3): 724-736.
Article
PubMed
Google Scholar
MacGregor EA: Possible structure and active site residues of starch, glycogen, and sucrose synthases. Journal of Protein Chemistry. 2002, 21 (4): 297-306.
Article
PubMed
Google Scholar
Henrissat B, Coutinho PM, Davies GJ: A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol. 2001, 47 (1–2): 55-72.
Article
PubMed
Google Scholar
Yep A, Ballicora MA, Preiss J: The active site of the Escherichia coli glycogen synthase is similar to the active site of retaining GT-B glycosyltransferases. Biochemical and Biophysical Research Communications. 2004, 316 (3): 960-966.
Article
PubMed
Google Scholar
Yep A, Ballicora MA, Preiss J: The ADP-glucose binding site of the Escherichia coli glycogen synthase. Archives of Biochemistry and Biophysics. 2006, 453 (2): 188-196.
Article
PubMed
Google Scholar
Furukawa K, Tagaya M, Inouye M, Preiss J, Fukui T: Identification of Lysine-15 at the Active-Site in Escherichia-Coli Glycogen-Synthase – Conservation of a Lys-X-Gly-Gly Sequence in the Bacterial and Mammalian Enzymes. Journal of Biological Chemistry. 1990, 265 (4): 2086-2090.
PubMed
Google Scholar
Furukawa K, Tagaya M, Tanizawa K, Fukui T: Role of the Conserved Lys-X-Gly-Gly Sequence at the Adp-Glucose-Binding Site in Escherichia-Coli Glycogen-Synthase. Journal of Biological Chemistry. 1993, 268 (32): 23837-23842.
PubMed
Google Scholar
Furukawa K, Tagaya M, Tanizawa K, Fukui T: Identification of Lys(277) at the Active-Site of Escherichia-Coli Glycogen-Synthase – Application of Affinity Labeling Combined with Site-Directed Mutagenesis. Journal of Biological Chemistry. 1994, 269 (2): 868-871.
PubMed
Google Scholar
Gao Z, Keeling P, Shibles R, Guan HP: Involvement of lysine-193 of the conserved "K-T-G-G" motif in the catalysis of maize starch synthase IIa. Arch Biochem Biophys. 2004, 427 (1): 1-7.
Article
PubMed
Google Scholar
Imparl-Radosevich JM, Keeling PL, Guan HP: Essential arginine residues in maize starch synthase IIa are involved in both ADP-glucose and primer binding. Febs Lett. 1999, 457 (3): 357-362.
Article
PubMed
Google Scholar
Nichols DJ, Keeling PL, Spalding M, Guan HP: Involvement of conserved aspartate and glutamate residues in the catalysis and substrate binding of maize starch synthase. Biochemistry. 2000, 39 (26): 7820-7825.
Article
PubMed
Google Scholar
Busi MV, Palopoli N, Valdez HA, Fornasari MS, Wayllace NZ, Gomez-Casati DF, Parisi G, Ugalde RA: Functional and structural characterization of the catalytic domain of the starch synthase III from Arabidopsis thaliana. Proteins: Structure, Function, and Bioinformatics. 2008, 70 (1): 31-40.
Article
Google Scholar
Gao M, Wanat J, Stinard PS, James MG, Myers AM: Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell. 1998, 10 (3): 399-412.
Article
PubMed
PubMed Central
Google Scholar
Imparl-Radosevich JM, Li P, Zhang L, McKean AL, Keeling PL, Guan HP: Purification and characterization of maize starch synthase I and its truncated forms. Arch Biochem Biophys. 1998, 353 (1): 64-72.
Article
PubMed
Google Scholar
Hennen-Bierwagen T, Liu F, Marsh R, Kim S, Gan Q, Tetlow I, Emes M, James M, Myers A: Starch biosynthetic enzymes from developing Zea mays endosperm associate in multisubunit complexes. Plant Physiology. 2008, 146-
Google Scholar
Tetlow I, Beisel K, Cameron S, Makhmoudova A, Bresolin N, Wait R, Morell M, Emes M: Analysis of protein complexes in wheat amyloplast reveals functional interactions among starch biosynthetic enzymes. Plant Physiology. 2008, 146-
Google Scholar
Denyer K, Barber LM, Edwards EA, Smith AM, Wang TL: Two isoforms of the GBSSI class of granule-bound starch synthase are differentially expressed in the pea plant (Pisum sativum L.). Plant Cell and Environment. 1997, 20 (12): 1566-1572.
Article
Google Scholar
Emanuelsson O, Nielsen H, Von Heijne G: ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science. 1999, 8 (5): 978-984.
Article
PubMed
PubMed Central
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: Clustal-W – Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22 (22): 4673-4680.
Article
PubMed
PubMed Central
Google Scholar
Clustal W: A multiple sequence alignment program for DNAor proteins. [http://www.ebi.ac.uk/Tools/clustalw/]
Patron NJ, Keeling PJ: Common evolutionary origin of starch biosynthetic enzymes in green and red algae. Journal of Phycology. 2005, 41 (6): 1131-1141.
Article
Google Scholar
Li Z, Sun F, Xu S, Chu X, Mukai Y, Yamamoto M, Ali S, Rampling L, Kosar-Hashemi B, Rahman S, et al: The structural organisation of the gene encoding class II starch synthase of wheat and barley and the evolution of the genes encoding starch synthases in plants. Functional Integrated Genomics. 2003, 3: 76-85.
Google Scholar
Sears ER: Nullisomic Analysis in Common Wheat. American Naturalist. 1953, 87 (835): 245-252.
Article
Google Scholar
Dian WM, Jiang HW, Wu P: Evolution and expression analysis of starch synthase III and IV in rice. Journal of Experimental Botany. 2005, 56 (412): 623-632.
Article
PubMed
Google Scholar
Ohdan T, Francisco PB, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y: Expression profiling of genes involved in starch synthesis in sink and source organs of rice. Journal of Experimental Botany. 2005, 56 (422): 3229-3244.
Article
PubMed
Google Scholar
Hirose T, Terao T: A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta. 2004, 220 (1): 9-16.
Article
PubMed
Google Scholar
Vrinten PL, Nakamura T: Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol. 2000, 122 (1): 255-263.
Article
PubMed
PubMed Central
Google Scholar
Busi MV, Palopoli N, Valdez HA, Fornasari MS, Wayllace NZ, Gomez-Casati DF, Parisi G, Ugalde RA: Functional and structural characterization of the catalytic domain of the starch synthase III from Arabidopsis thaliana. Proteins: Structure, Function, and Bioinformatics. 2007, 9999 (9999):
Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM: Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. Embo Journal. 2004, 23 (16): 3196-3205.
Article
PubMed
PubMed Central
Google Scholar
Yep A, Ballicora MA, Sivak MN, Preiss J: Identification and characterization of a critical region in the glycogen synthase from Escherichia coli. Journal of Biological Chemistry. 2004, 279 (9): 8359-8367.
Article
PubMed
Google Scholar
Jnet: A Neural Network Protein Secondary Structure Prediction Method. [http://www.compbio.dundee.ac.uk/]
Cuff JA, Barton GJ: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins-Structure Function and Genetics. 1999, 34 (4): 508-519.
Article
Google Scholar
de Souza SJ, Long MY, Schoenbach L, Roy SW, Gilbert W: The correlation between introns and the three-dimensional structure of proteins. Gene. 1997, 205 (1–2): 141-144.
Article
PubMed
Google Scholar
deSouza SJ, Long M, Schoenbach L, Roy SW, Gilbert W: Intron positions correlate with module boundaries in ancient proteins. P Natl Acad Sci USA. 1996, 93 (25): 14632-14636.
Article
Google Scholar
Rogozin IB, Sverdlov AV, Babenko VN, Koonin EV: Analysis of evolution of exon-intron structure of eukaryotic genes. Briefings in Bioinformatics. 2005, 6 (2): 118-134.
Article
PubMed
Google Scholar
Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV: Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Current Biology. 2003, 13 (17): 1512-1517.
Article
PubMed
Google Scholar
Denyer K, Johnson P, Zeeman S, Smith AM: The control of amylose synthesis. Journal of Plant Physiology. 2001, 158 (4): 479-487.
Article
Google Scholar
Hare MP, Palumbi SR: High intron sequence conservation across three mammalian orders suggests functional constraints. Molecular Biology and Evolution. 2003, 20 (6): 969-978.
Article
PubMed
Google Scholar
Li ZY, Mouille G, Kosar-Hashemi B, Rahman S, Clarke B, Gale KR, Appels R, Morell MK: The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiol. 2000, 123 (2): 613-624.
Article
PubMed
PubMed Central
Google Scholar
Dian WM, Jiang HW, Chen QS, Liu FY, Wu P: Cloning and characterization of the granule-bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta. 2003, 218 (2): 261-268.
Article
PubMed
Google Scholar
Wang SJ, Yeh KW, Tsai CY: Regulation of starch granule-bound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Science. 2001, 161 (4): 635-644.
Article
Google Scholar
Denyer K, Waite D, Motawia S, Moller BL, Smith AM: Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochemical Journal. 1999, 340: 183-191.
Article
PubMed
PubMed Central
Google Scholar
Guan HP, Keeling PL: Starch biosynthesis: Understanding the functions and interactions of multiple isozymes of starch synthase and branching enzyme. Trends Glycosci Glyc. 1998, 10 (54): 307-319.
Article
Google Scholar
Barford D, Johnson LN: The Molecular Mechanism for the Tetrameric Association of Glycogen-Phosphorylase Promoted by Protein-Phosphorylation. Protein Science. 1992, 1 (4): 472-493.
Article
PubMed
PubMed Central
Google Scholar
Oreilly M, Watson KA, Schinzel R, Palm D, Johnson LN: Oligosaccharide substrate binding in Escherichia coli maltodextrin phosphorylase. Nature Structural Biology. 1997, 4 (5): 405-412.
Article
Google Scholar
Watson KA, McCleverty C, Geremia S, Cottaz S, Driguez H, Johnson LN: Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. Embo Journal. 1999, 18 (17): 4619-4632.
Article
PubMed
PubMed Central
Google Scholar
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D: Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. P Natl Acad Sci USA. 2002, 99 (19): 12246-12251.
Article
Google Scholar
Rujan T, Martin W: How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet. 2001, 17 (3): 113-120.
Article
PubMed
Google Scholar
Hitz WD, Carlson TJ, Kerr PS, Sebastian SA: Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol. 2002, 128 (2): 650-660.
Article
PubMed
PubMed Central
Google Scholar
NCBI Basic Local Alignment and Search Tool – BLASTP. [http://www.ncbi.nlm.nih.gov/BLAST/]
Kumar S, Tamura K, Nei M: MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics. 2004, 5 (2): 150-163.
Article
PubMed
Google Scholar
The Pfam database of protein families and HMMs. [http://pfam.janelia.org/]
Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL: The Pfam protein families database. Nucleic Acids Research. 2000, 28 (1): 263-266.
Article
PubMed
PubMed Central
Google Scholar
Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P: SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 2006, 34: D257-D260.
Article
PubMed
PubMed Central
Google Scholar
Schultz J, Milpetz F, Bork P, Ponting CP: SMART, a simple modular architecture research tool: Identification of signaling domains. P Natl Acad Sci USA. 1998, 95 (11): 5857-5864.
Article
Google Scholar
SMART: Simple Modular Architecture Research Tools. [http://smart.embl-heidelberg.de/]
Karplus K, Karchin R, Draper J, Casper J, Mandel-Gutfreund Y, Diekhans M, Hughey R: Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins-Structure Function and Genetics. 2003, 53 (6): 491-496.
Article
Google Scholar
SAM-T02: HMM-based Protein Structure Prediction. [http://www.soe.ucsc.edu/compbio/HMM-apps/T02-query.html]
Labesse G, Mornon J-P: T.I.T.O a tool for incremental threading optimization in order to help alignment and molecular modeling at any sequence similarity level. Bioinformatics. 1997, 14: 206-211.
Article
Google Scholar
T.I.T.O. (Tool for Incremental ThreadingOptimisation). [http://bioserv.cbs.cnrs.fr/HTML_BIO/frame_tito.html]
Spidey: An mRNA-to-genomic alignment program. [http://www.ncbi.nlm.nih.gov/spidey/]