Luley-Goedl C, Nidetzky B: Glycosides as compatible solutes: biosynthesis and applications. Nat Prod Rep. 2011, 28: 875-896. 10.1039/c0np00067a.
Article
PubMed
CAS
Google Scholar
Vucenik I, Shamsuddin AM: Protection against cancer by dietary IP6 and inositol. Nutr Canc. 2006, 55: 109-125. 10.1207/s15327914nc5502_1.
Article
CAS
Google Scholar
Shamsuddin AM, Vucenik I, Cole KE: IP6: a novel anti-cancer agent. Life Sci. 1997, 61: 343-354. 10.1016/S0024-3205(97)00092-1.
Article
PubMed
CAS
Google Scholar
Murphy AM, Brearley OB CA, Carr JP, Hanke DE: A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J. 2008, 56: 638-652. 10.1111/j.1365-313X.2008.03629.x.
Article
PubMed
CAS
Google Scholar
Schröterová L, Hasková P, Rudolf E, Cervinka M: Effect of phytic acid and inositol on the proliferation and apoptosis of cells derived from colorectal carcinoma. Oncol Rep. 2010, 23: 787-793.
PubMed
Google Scholar
Verghese M, Rao DR, Chawan CB, Walker LT, Shackelford L: Anticarcinogenic effect of phytic acid (IP6): Apoptosis as a possible mechanism of action. LWT. 2006, 39: 1093-1098. 10.1016/j.lwt.2005.07.012.
Article
CAS
Google Scholar
Xu Q, Kanthasamy AG, Reddy MB: Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson's disease. Toxicology. 2008, 245: 101-108. 10.1016/j.tox.2007.12.017.
Article
PubMed
CAS
Google Scholar
Macbeth MR, Schubert HL, VanDemark AP, Lingam AT, Hill CP, Bass BL: Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. 2005, 309: 1534-1539. 10.1126/science.1113150.
Article
PubMed
CAS
PubMed Central
Google Scholar
Graf E, Eaton JW: Antioxidant functions of phytic acid. Free Radic Biol Med. 1990, 8: 61-69. 10.1016/0891-5849(90)90146-A.
Article
PubMed
CAS
Google Scholar
Doria E, Galleschi L, Galucci L, Pinzino C, Pilu R, Cassani E, Nielsen E: Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant. J Exp Bot. 2009, 60: 967-978. 10.1093/jxb/ern345.
Article
PubMed
CAS
Google Scholar
Georges F, Das S, Ray H, Bock C, Nokhrina K, Kolla VA, Keller K: Over-Expression of Brassica napus Phosphatidylinositol-Phospholipase C2 (BnPtdIns-PLC2) in Canola Induces Significant Changes in Gene Expression and Phytohormone Distribution Patterns, Enhances Drought Tolerance and Promotes Early Flowering and maturation. Plant Cell Environ. 2009, 32: 1664-1681. 10.1111/j.1365-3040.2009.02027.x.
Article
PubMed
CAS
Google Scholar
Suzuki M, Tanaka K, Kuwano M, Yoshida KT: Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Gene. 2007, 405: 55-64. 10.1016/j.gene.2007.09.006.
Article
PubMed
CAS
Google Scholar
Pilu R, Panzeri D, Gavazzi G, Rasmussen SK, Consonni G, Nielsen E: Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor Appl Genet. 2003, 107: 980-987. 10.1007/s00122-003-1316-y.
Article
PubMed
CAS
Google Scholar
Panzeri D, Cassani E, Doria E, Tagliabue G, Forti L, Campion B, Bollini R, Brearley CA, Pilu R, Nielsen E, Sparvoli F: A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol. 2011, 191: 70-83. 10.1111/j.1469-8137.2011.03666.x.
Article
PubMed
CAS
Google Scholar
Wilcox J, Premachandra G, Yound K, Raboy V: Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci. 2000, 40: 1601-1605. 10.2135/cropsci2000.4061601x.
Article
Google Scholar
Kuwano M, Ohyama A, Tanaka Y, Mimura T, Takaiwa F, Yoshida KT: Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Mol Breed. 2006, 18: 263-272. 10.1007/s11032-006-9038-x.
Article
CAS
Google Scholar
Kuwano M, Takaiwa F, Yoshida KT: Differential effects of a transgene to confer low phytic acid in caryopses located at different positions in rice panicles. Plant Cell Physiol. 2009, 50: 1387-1392. 10.1093/pcp/pcp071.
Article
PubMed
CAS
Google Scholar
Nunes ACS, Vianna GR, Cuneo F, Guy de Capdeville JA-F, Rech EL, Aragão FJL: RNAi-mediated silencing of the L-myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta. 2006, 224: 125-132. 10.1007/s00425-005-0201-0.
Article
PubMed
CAS
Google Scholar
Georges F, Hussain AAK, Keller WA: Method for reducing phytate in canola meal using genetic manipulation involving myo-inositol 1-phosphate synthase gene. Patent. 2006, WO 00/73473 A1
Google Scholar
Vernon DM, Bohnert HJ: A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J. 1992, 11: 2077-2085.
PubMed
CAS
PubMed Central
Google Scholar
Keller WA, Datla R, Dong J-Z, Georges F, Hussain AAK, Selvaraj G: Methods and compositions for modifying levels of secondary metabolic compounds in plants. Patent. 2007, US7279619
Google Scholar
Vernon DM, Tarczynski MC, Jensen RG, Bohnert HJ: Cyclitol production in transgenic tobacco. Plant J. 1993, 4: 199-205. 10.1046/j.1365-313X.1993.04010199.x.
Article
CAS
Google Scholar
Sheveleva E, Chmara W, Bohnert HJ, Jensen RC: lncreased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L. Plant Physiol. 1997, 115: 1211-1219.
PubMed
CAS
PubMed Central
Google Scholar
Chiera JM, Streeter JG, Finer JJ: Ononitol and pinitol production in transgenic soybean containing the inositol methyl transferase gene from Mesembryanthemum crystallinum. Plant Sci. 2006, 171: 647-654. 10.1016/j.plantsci.2006.06.006.
Article
CAS
Google Scholar
Patra B, Ray S, Richter A, Majumder AL: Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma. 2010, 245: 143-152. 10.1007/s00709-010-0163-3.
Article
PubMed
CAS
Google Scholar
Paulick MG, Bertozzi CR: The glycosylphosphatidylinositol anchor: A complex membrane-anchoring structure for proteins. Biochemistry. 2008, 47: 6991-7000. 10.1021/bi8006324.
Article
PubMed
CAS
PubMed Central
Google Scholar
Moise JA, Han S, Gudynait-Savitch L, Johnson DA, Miki BLA: Seed coats: Structure, development, composition and biotechnology. In Vitro Cell Dev Biol Plant. 2005, 41: 620-644. 10.1079/IVP2005686.
Article
Google Scholar
Coelho CMM, Benedito VA: Seed development and reserve compound accumulation in common bean (Phaseolus vulgaris L.). Seed Sci Biotechnol. 2008, 2: 42-52.
Google Scholar
Morley-Smith ER, Pike MJ, Findlay K, Köckenberger W, Hill LM, Smith AM, Rawsthorne S: The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. Plant Physiol. 2008, 147: 2121-2130. 10.1104/pp.108.124644.
Article
PubMed
CAS
PubMed Central
Google Scholar
Loewus FA, Kelly S, Neufeld EF: Metabolism of myo-inositol in plants: Conversion to pectin, hemicellulose, D-xylose, and sugar acids. Biochemistry. 1962, 48: 421-425.
CAS
Google Scholar
Altenbach SB, Pearson KW, Meeker G, Staraci LC, Sun SM: Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. Plant Mol Biol. 1989, 13: 513-522. 10.1007/BF00027311.
Article
PubMed
CAS
Google Scholar
Sengupta-Gopalan C, Reichert NA, Barker RF, Hall TC, Kemp JD: Developmentally regulated expression of the bean β-phaseolin gene in tobacco seed. Proc Natl Acad Sci USA. 1985, 82: 3320-3324. 10.1073/pnas.82.10.3320.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chandrasekharan MB, Bishop KJ, Hall TC: Module-specific regulation of the b-phaseolin promoter during embryogenesis. Plant J. 2003, 33: 853-866. 10.1046/j.1365-313X.2003.01678.x.
Article
PubMed
CAS
Google Scholar
Burow MD, Sen P, Chlant CA, Murai N: Developmental control of the β-phaseolin gene requires positive, negative, and temporal seed-specific transcriptional regulatory elements and a negative element for stem and root expression. Plant J. 1992, 2: 537-548. 10.1111/j.1365-313X.1992.00537.x.
Article
CAS
Google Scholar
Kawagoe Y, Murai N: Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein beta-phaseolin gene conferring spatial and temporal control. Plant J. 1992, 2: 927-936.
PubMed
CAS
Google Scholar
Kozak M: At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. Mol Biol. 1987, 196: 947-950. 10.1016/0022-2836(87)90418-9.
Article
CAS
Google Scholar
Rangan L, Vogel C, Srivastava A: Analysis of Context Sequence Surrounding Translation Initiation Site from Complete Genome of Model Plants. Mol Biotechnol. 2008, 39: 207-213. 10.1007/s12033-008-9036-9.
Article
PubMed
CAS
Google Scholar
Stalberg K, Ellerstrom M, Josefsson LG, Rask L: Deletion analysis of a 2S seed storage protein promoter of Brassica napus in transgenic tobacco. Plant Mol Biol. 1993, 23: 671-683. 10.1007/BF00021523.
Article
PubMed
CAS
Google Scholar
Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PP, Sheridan WF, Ertl DS: Origin and seed phenotype of maize low phytic acid 1–1 and low phytic acid 2–1. Plant Physiol. 2000, 124: 355-368. 10.1104/pp.124.1.355.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bock C, Ray H, Georges F: Down-regulation of galactinol synthesis in oilseed Brassica napusleads to significant reduction of antinutritional oligosaccharides. Botany. 2009, 87: 597-603. 10.1139/B09-037.
Article
CAS
Google Scholar
Hopf H, Gruber G, Zinn A, Kandler O: Physiology and biosynthesis of lychnose in Cerastium arvense. Planta. 1984, 162: 283-288. 10.1007/BF00397451.
Article
PubMed
CAS
Google Scholar
Vanhaecke M, Dyubankova N, Lescrinier E, Van den Ende W: Metabolism of galactosyl-oligosaccharides in Stellaria media – Discovery of stellariose synthase, a novel type of galactosyltransferase. Phytochemistry. 2010, 71: 1095-1103. 10.1016/j.phytochem.2010.04.012.
Article
PubMed
CAS
Google Scholar
Peterbauer T, Richter A: Galactosylononitol and Stachyose Synthesis in Seeds of Adzuki Bean. Plant Physiol. 1998, 117: 165-172. 10.1104/pp.117.1.165.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ostrem JA, Olsen SW, Scmitt JM, Bohnert HJ: Salt stress increases the level of translatable mRNA for phosphoenolpyruvate carboxylase in Mesembryanthemum crystallinum. Plant Physiol. 1987, 84: 1270-1275. 10.1104/pp.84.4.1270.
Article
PubMed
CAS
PubMed Central
Google Scholar
Naczk M, Wanasundara PKJP, Shahidi F: Facile spectrotophotometric quantification method of sinapic acid in hexane-extracted and methanolammonia-water treated mustard and rapeseed meals. J Agric Food Chem. 1992, 40: 444-448. 10.1021/jf00015a016.
Article
CAS
Google Scholar
Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS: The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol. 2003, 131 (2): 507-515. 10.1104/pp.014258. Feb
Article
PubMed
CAS
PubMed Central
Google Scholar
Aviv H, Leder P: Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci USA. 1972, 69: 1408-1412. 10.1073/pnas.69.6.1408.
Article
PubMed
CAS
PubMed Central
Google Scholar
Datla RSS, Hammerlindl JK, Panchuk B, Pelcher LE, Keller W: Modified binary plant transformation vectors with the wild-type gene encoding NPTII Gene. Gene. 1992, 211: 383-384.
Google Scholar
Moloney MM, Walker JM, Sharma KK: High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep. 1989, 8: 238-242. 10.1007/BF00778542.
Article
PubMed
CAS
Google Scholar
Nelson DE, Rammesmayer G, Bohnert HJ: Regulation of Cell-Specific Inositol Metabolism and Transport in Plant Salinity Tolerance. Plant Cell. 1998, 10: 753-764.
PubMed
CAS
PubMed Central
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular cloning, a laboratory manual, 3rd ED. Cold Spring Harbor Laboratory Press. 1989, 1: 6.39-7.50.
Google Scholar