Cederroth CR, Nef S: Soy, phytoestrogens and metabolism: A review. Mol Cell Endocrinol. 2009, 304 (1-2): 30-42. 10.1016/j.mce.2009.02.027.
Article
PubMed
CAS
Google Scholar
Rochfort S, Panozzo J: Phytochemicals for health, the role of pulses. J Agric Food Chem. 2007, 55: 7981-7994. 10.1021/jf071704w.
Article
PubMed
CAS
Google Scholar
Zhang J, Yu O: Metabolic engineering of isoflavone biosynthesis in seeds. In Modification of seed composition to promote health and nutrition. Edited by: Hari Krishnan. Agronomy Monograph Series, 2009:151-177.
Google Scholar
Subramanian S, Hu X, Lu G, Odelland JT, Yu O: The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol. 2004, 54: 623-639. 10.1023/B:PLAN.0000040814.28507.35.
Article
PubMed
CAS
Google Scholar
Subramanian S, Graham MY, Yu O, Graham TL: RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol. 2005, 137: 1345-1353. 10.1104/pp.104.057257.
Article
PubMed
CAS
PubMed Central
Google Scholar
Subramanian S, Stacey G, Yu O: Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J. 2006, 48: 261-273. 10.1111/j.1365-313X.2006.02874.x.
Article
PubMed
CAS
Google Scholar
Subramanian S, Stacey G, Yu O: Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci. 2007, 12: 282-285. 10.1016/j.tplants.2007.06.006.
Article
PubMed
CAS
Google Scholar
Eldridge A, Kwolek W: Soybean isoflavones: Effect of the environment and variety on composition. J Agric Food Chem. 1983, 31: 394-396. 10.1021/jf00116a052.
Article
PubMed
CAS
Google Scholar
Wang H, Murphy PA: Isoflavone Composition of American and Japanese Soybeans in Iowa: Effects of Variety, Crop Year, and Location. J Agric Food Chem. 1994, 42: 1674-1677. 10.1021/jf00044a017.
Article
CAS
Google Scholar
Kassem MA, Meksem K, Iqbal MJ, Njiti VN, Banz WJ, Winters TA, Wood A, Lightfoot DA: Definition of soybean genomic regions that control seed phytoestrogen amounts. J Bio & Biotech. 2004, 1: 52-60. 10.1155/S1110724304304018.
Article
Google Scholar
Kassem MA, Shultz J, Meksem K, Cho Y, Wood AJ, Iqbal MJ, Lightfoot DA: An updated 'Essex' by 'Forrest' linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet. 2006, 113: 1015-1026. 10.1007/s00122-006-0361-8.
Article
PubMed
CAS
Google Scholar
Primomo VS, Poysa V, Ablett GR, Jackson CJ, Gijzen M, Rajcan I: Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci. 2005, 45: 2454-2462. 10.2135/cropsci2004.0672.
Article
CAS
Google Scholar
Zeng G, Li D, Han Y, Teng W, Wang J, Qiu L, Li W: Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theor Appl Genet. 2009, 118: 1455-1463. 10.1007/s00122-009-0994-5.
Article
PubMed
CAS
Google Scholar
Gutierrez-Gonzalez JJ, Wu X, Zhang J, Lee JD, Ellersieck M, Shannon JG, Yu O, Nguyen HT, Sleper DA: Genetic control of soybean seed isoflavone content: Importance of statistical model and epistasis in complex traits. Theor Appl Genet. 2009, 119 (6): 1069-1083. 10.1007/s00122-009-1109-z.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA: Genome sequence of the palaeopolyploid soybean. Nature. 2010, 463: 178-183. 10.1038/nature08670.
Article
PubMed
CAS
Google Scholar
Tsukamoto C, Shimada S, Igita K, Kudou S, Kokubun M, Okubo K, Kitamura K: Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J Agric Food Chem. 1995, 43: 1184-1192. 10.1021/jf00053a012.
Article
CAS
Google Scholar
Stafford HA: Roles of flavonoids in symbiotic and defense functions in legume roots. Bot Rev. 1997, 63: 27-39. 10.1007/BF02857916.
Article
Google Scholar
Dhaubhadel S, McGarvey BD, Williams R, Gijzen M: Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol. 2003, 53: 733-743. 10.1023/B:PLAN.0000023666.30358.ae.
Article
PubMed
CAS
Google Scholar
Bennett JO, Yu O, Heatherly LG, Krishnan HB: Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. J Agric Food Chem. 2004, 52: 7574-7579. 10.1021/jf049133k.
Article
PubMed
CAS
Google Scholar
Lozovaya VV, Lygin AV, Ulanov AV, Nelson RL, Dayde J, Widhohm JM: Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci. 2005, 45: 1934-1940. 10.2135/cropsci2004.0567.
Article
CAS
Google Scholar
Hoeck JA, Fehr WR, Murphy PA, Welke GA: Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 2000, 40: 48-51. 10.2135/cropsci2000.40148x.
Article
CAS
Google Scholar
Mebrahtu T, Mohamed A, Wang CY, Andebrhan T: Analysis of isoflavone contents in vegetable soybeans. Plant Foods for Human Nutrition. 2004, 59: 55-61. 10.1007/s11130-004-0023-4.
Article
PubMed
CAS
Google Scholar
Murphy SE, Lee EA, Woodrow L, Seguin P, Kumar J, Rajcan I, Ablett GR: Genotype × Environment interaction and stability for isoflavone content in soybean. Crop Sci. 2009, 49: 1313-1321. 10.2135/cropsci2008.09.0533.
Article
CAS
Google Scholar
Yu O, McGonigle B: Metabolic engineering of isoflavone biosynthesis. Advances in Agronomy. 2005, 86: 147-190. full_text.
Article
CAS
Google Scholar
Carlborg O, Haley CS: Epistasis: too often neglected in complex trait studies?. Nature reviews. 2004, 5: 618-625. 10.1038/nrg1407.
Article
PubMed
CAS
Google Scholar
Doerge RW: Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews. 2001, 3: 43-52.
Article
Google Scholar
Phillips PC: Epistasis, the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews. 2008, 9: 855-867. 10.1038/nrg2452.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wright S: Evolution in Mendelian populations. Genetics. 1931, 16: 97-159.
PubMed
CAS
PubMed Central
Google Scholar
Doebley J, Stec A, Gustus C: Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics. 1995, 141: 333-346.
PubMed
CAS
PubMed Central
Google Scholar
Whitlock MC: Multiple fitness peaks and epistasis. Annu Rev Ecol Syst. 1995, 26: 601-629. 10.1146/annurev.es.26.110195.003125.
Article
Google Scholar
Weinreich DM, Watson RA, Chao L: Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution. 2005, 59: 1165-1174.
Article
PubMed
CAS
Google Scholar
Malmberg RL, Mauricio R: QTL-based evidence for the role of epistasis in evolution. Genet Res Camb. 2005, 86: 89-95. 10.1017/S0016672305007780.
Article
CAS
Google Scholar
Melchinger AE, Piepho HP, Utz HF, Muminovic J, Wegenast TW, Torjek O, Altmann T, Kusterer B: Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics. 2007, 177: 1827-1837. 10.1534/genetics.107.080564.
Article
PubMed
PubMed Central
Google Scholar
Sanjuan R, Elena SF: Epistasis correlates to genomic complexity. PNAS. 2006, 103: 14402-14405. 10.1073/pnas.0604543103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wilfert L, Schmid-Hempel P: The genetic architecture of susceptibility to parasites. BMC Evolutionary Biology. 2008, 8: 187-1994. 10.1186/1471-2148-8-187.
Article
PubMed
PubMed Central
Google Scholar
Shoemaker RC, Sculueter JA, Jackson SA: Soybean Genome Structure and Organization. Book chapter in Genetics and Genomics of Soybean G. Stacey (ed.). Springer Science+Business Media LLC:2008.
Google Scholar
Shoemaker RC, Schlueter J, Doyle JJ: Paleopolyploidy and gene duplication in soybean and other legumes. Current Opinion in Plant Biology. 2006, 9: 104-109. 10.1016/j.pbi.2006.01.007.
Article
PubMed
CAS
Google Scholar
Doyle JJ, Flagel LE, Paterson HA, Rapp RA, Soltis DE, Soltis PS, Wendel JF: Evolutionary Genetics of Genome Merger and Doubling in Plants. Annual Review of Genetics. 2008, 42: 443-461. 10.1146/annurev.genet.42.110807.091524.
Article
PubMed
CAS
Google Scholar
Koes RE, Quattrocchio F, King AA: The flavonoid biosynthetic pathway in plants-Function and evolution. Bioessays. 1994, 16: 123-132. 10.1002/bies.950160209.
Article
CAS
Google Scholar
Zernova OV, Lygin AV, Widholm JM, Lozovaya VV: Modification of isoflavones in soybean seeds via expression of multiple phenolic biosynthetic genes. Plant Physiol Biochem. 2009, 47: 769-777. 10.1016/j.plaphy.2009.05.006.
Article
PubMed
CAS
Google Scholar
Wang DL, Zhu J, Paterson AH: Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet. 1999, 99: 1255-1264. 10.1007/s001220051331.
Article
Google Scholar
Bernardo R: Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci. 2008, 48: 1649-1664. 10.2135/cropsci2008.03.0131.
Article
Google Scholar
Melchinger AE, Utz HF, Schon CC: Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics. 1998, 149: 383-403.
PubMed
CAS
PubMed Central
Google Scholar
Alcazar R, Garcia AV, Parker JE, Reymond M: Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. PNAS. 2009, 106: 334-339. 10.1073/pnas.0811734106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Beggs CJ, Stolzer-Jehle A, Wellmann E: Isoflavonoid formation as an indicator of UV stress in bean (Phaseolus vulgaris L.) leaves: the significance of photorepair in assessing potential damage by increased solar UV-B radiation. Plant Physiol. 1985, 79 (3): 630-634. 10.1104/pp.79.3.630.
Article
PubMed
CAS
PubMed Central
Google Scholar
Variyar PS, Limaye A, Sharma A: Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). J Agric Food Chem. 2004, 52: 3385-3388. 10.1021/jf030793j.
Article
PubMed
CAS
Google Scholar
Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ, Dixon RA: Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. PNAS. 2007, 104: 17909-17915. 10.1073/pnas.0708697104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Beavis WD: The power and deceit of QTL experiments: lessons from comparative QTL studies. proceedings of the 49th annual corn and sorghum industry research conference Washington DC. 1994
Google Scholar
Xu S: Theoretical basis of the Beavis effect. Genetics. 2003, 165: 2259-2268.
PubMed
PubMed Central
Google Scholar
Kearsey MJ, Pooni HS, Syed NH: Genetics of quantitative traits in Arabidopsis thaliana. Heredity. 2003, 91: 45-464. 10.1038/sj.hdy.6800306.
Article
Google Scholar
Goodnight CJ: Epistasis and the effect of founder events on the additive genetic variance. Evolution. 1988, 42: 441-454. 10.2307/2409030.
Article
Google Scholar
Ahrent DK, Caviness CE: Natural cross-pollination of twelve soybean cultivars in Arkansas. Crop Sci. 1994, 34: 376-378. 10.2135/cropsci1994.0011183X003400020013x.
Article
Google Scholar
Holland JB: Genetic architecture of complex traits in plants. Current Opinion in Plant Biology. 2007, 10: 156-161. 10.1016/j.pbi.2007.01.003.
Article
PubMed
CAS
Google Scholar
Rowe HC, Hansen BG, Halkier BA, Kliebenstein DJ: Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell. 2008, 20: 1199-1216. 10.1105/tpc.108.058131.
Article
PubMed
CAS
PubMed Central
Google Scholar
Otto SP, Jones CD: Detecting the undetected: Estimating the total number of loci underlying a quantitative trait. Genetics. 2000, 156: 2093-2107.
PubMed
CAS
PubMed Central
Google Scholar
Gutierrez-Gonzalez JJ, Guttikonda S, Aldrich DL, Tran LSP, Zhong R, Yu O, Nguyen HT, Sleper DA: Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant & Cell Physiol. 2010.
Google Scholar
Matsumura H, Watanabe S, Harada K, Senda M, Akada S, Kawasaki S, Dubouzet EG, Minaka N, Takahashi R: Molecular linkage mapping and phylogeny of the chalcone synthase multigene family in soybean. Theor Appl Genet. 2005, 110: 1203-1209. 10.1007/s00122-005-1950-7.
Article
PubMed
CAS
Google Scholar
Tuteja JH, Vodkin LO: Structural features of the endogenous CHS silencing and target loci in the soybean genome. The Plant Genome Crop Sci. 2008, 48 (S1): S49-S68.
CAS
Google Scholar
Todd JJ, Vodkin LO: Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell. 1996, 8: 687-699. 10.1105/tpc.8.4.687.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kasai A, Watarai M, Yumoto S, Akada S, Ishikawa R, Harada T, Niizeki M, Senda M: Influence of PTGS on Chalcone Synthase Gene Family in Yellow Soybean Seed Coat. Breed Sci. 2004, 54: 355-360. 10.1270/jsbbs.54.355.
Article
CAS
Google Scholar
Tuteja JH, Clough SJ, Chan WC, Vodkin LO: Tissue-specific gene silencing mediated by a natural occurring chalcone synthase gene cluster in Glycine max. Plant Cell. 2004, 16: 819-835. 10.1105/tpc.021352.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mei HW, Li ZK, Shu QY, Guo LB, Wang YP, Yu XQ, Ying CS, Luo LJ: Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet. 2003, 107: 89-101.
PubMed
CAS
Google Scholar
Malmberg RL, Held S, Waits A, Mauricio R: Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics. 2005, 171: 2013-2027. 10.1534/genetics.105.046078.
Article
PubMed
CAS
PubMed Central
Google Scholar
McMullen MD, Snook M, Lee EA, Byrne PF, Kross H, Musket TA, Houchins K, Coe EH jr: The biological basis of epistasis between quantitative trait loci for flavones and 3-deoxyanthocyanin synthesis in maize (Zea mays L.). Genome. 2001, 44: 667-676. 10.1139/gen-44-4-667.
Article
PubMed
CAS
Google Scholar
Kroymann J, Mitchell-Olds T: Epistasis and balanced polymorphism influencing complex trait variation. Nature. 2005, 435: 95-98. 10.1038/nature03480.
Article
PubMed
CAS
Google Scholar
Sweigart AL, Fishman L, Willis JH: A simple genetic incompatibility causes hybrid male sterility in mimulus. Genetics. 2006, 172: 2465-2479. 10.1534/genetics.105.053686.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lark KG, Chase K, Adler F, Mansur LM, Orf JH: Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. PNAS. 1995, 92: 4656-4660. 10.1073/pnas.92.10.4656.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ehrenreich IM, Stafford PA, Purugganan MD: The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics. 2007, 176: 1223-1236. 10.1534/genetics.107.071928.
Article
PubMed
CAS
PubMed Central
Google Scholar
Segre D, DeLuna A, Church GM, Kishony R: Modular epistasis in yeast metabolism. Nat Genet. 2005, 37: 77-83.
PubMed
CAS
Google Scholar
Hill J, Becker HC, Tigerstedt PMA: Quantitative and ecological aspects of plant breeding. Chapman and Hall, London:1998.
Chapter
Google Scholar
Wu X, Blake S, Sleper DA, Shannon G, Cregan P, Nguyen HT: QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet. 2008, 118: 1093-1105. 10.1007/s00122-009-0965-x.
Article
Google Scholar
Yang J, Zhu J, Williams RW: Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics. 2007, 23: 1527-1536. 10.1093/bioinformatics/btm143.
Article
PubMed
CAS
Google Scholar
Yi N, Xu S: Mapping quantitative trait loci with epistatic effects. Genet Res Camp. 2002, 79: 185-198.
Google Scholar