Boskabady MH, Shafei MN, Saberi Z, Amini S. Pharmacological effects of Rosa damascena. Iranian J Basic Med Sci. 2011;14(4):295.
CAS
Google Scholar
Chowdhury SR, Tandon P, Chowdhury A. Rose oil from Rosa damascena Mill., raised on alkaline soils. J Essent Oil Bear Plants. 2009;12(2):213–7.
Article
CAS
Google Scholar
Momenpour A, Imani A, Bakhshi D, Rezaei H. Evaluation of salinity tolerance in some almond genotypes grafted on GF677 rootstock base on morphological characteristic and chlorophyll fluorescence. J P Proc func. 2015;3(10):9–28.
Google Scholar
do Nascimento NC, Fett-Neto AG. Plant secondary metabolism and challenges in modifying its operation: an overview. P Sec Metabol Engin. 2010;643:1–13.
Google Scholar
Ozkur O, Ozdemir F, Bor M, Turkan I. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. To drought. Environ Exp Bot. 2009;66(3):487–92.
Article
CAS
Google Scholar
Sarker U, Oba S. The response of salinity stress-induced a. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci. 2020;11:559876.
Article
PubMed
PubMed Central
Google Scholar
Yong Z, Hao-Ru T, Ya L. Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress. World J Agric Sci. 2008;4(4):458–62.
Google Scholar
Hayat S, Ali B, Ahmad A. Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Salicylic acid: a plant hormone. Dordrecht: Springer; 2007. p. 1–14.
Hayat S, Hasan SA, Fariduddin Q, Ahmad A. Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Plant Interact. 2008;3(4):297–304.
Article
CAS
Google Scholar
Liu W, Zhang Y, Yuan X, Xuan Y, Gao Y, Yan Y. Exogenous salicylic acid improves salinity tolerance of Nitraria tangutorum. Russian J Plant Physiol. 2016;63(1):132–42.
Article
CAS
Google Scholar
Fariduddin Q, Hayat S, Ahmad A. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica. 2003;41(2):281–4.
Article
CAS
Google Scholar
Srivastava MK, Dwivedi UN. Delayed ripening of banana fruit by salicylic acid. Plant Sci. 2000;158(1–2):87–96.
Article
CAS
PubMed
Google Scholar
Tuna AL, Kaya C, Dikilitaş M, Yokaş İ, Burun B, Altunlu H. Comparative effects of various salicylic acid derivatives on key growth parameters and some enzyme activities in salinity stressed maize (Zea mays L.) plants. Pak j Bot. 2007;39(3):787–98.
Wang Z, Ma L, Zhang X, Xu L, Cao J, Jiang W. The effect of exogenous salicylic acid on antioxidant activity, bioactive compounds and antioxidant system in apricot fruit. Sci Hortic. 2015;181:113–20.
Article
CAS
Google Scholar
Agarwal S, Sairam R, Srivastava G, Meena R. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Bio Plant. 2005;49(4):541–50.
Article
CAS
Google Scholar
Blanch GP, Gómez-Jiménez MC. Ruiz del Castillo ML: enrichment of olive fruits in antioxidant content by pre-harvest salicylic acid treatment. Foods. 2020;9(10):1513.
Article
CAS
PubMed Central
Google Scholar
Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Páldi E. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 2003;164(2):301–6.
Article
CAS
Google Scholar
Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 2003;164(3):317–22.
Article
CAS
Google Scholar
Chakraborty U, Tongden C. Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Curr Sci. 2005;89(2):384–9.
Bolat I, Dikilitas M, Ikinci A, Ercisli S, Tonkaz T. Morphological, physiological, biochemical characteristics and bud success responses of myrobolan 29 c plum rootstock subjected to water stress. Can J Plant Sci. 2016;96(3):485–93.
Article
CAS
Google Scholar
Barrs H, Weatherley P. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci. 1962;15(3):413–28.
Article
Google Scholar
Bacelar EA, Santos DL, Moutinho-Pereira JM, Lopes JI, Gonçalves BC, Ferreira TC, et al. Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. Plant Soil. 2007;292(1):1–12.
Article
CAS
Google Scholar
Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods Enzymol, vol. 148. Elsevier, Academic Press; 1987. p. 350–82.
Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.
Article
CAS
PubMed
Google Scholar
Plewa MJ, Smith SR, Wagner ED. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutat Res. 1991;247(1):57–64.
Article
CAS
PubMed
Google Scholar
Bates LS, Waldren RP, Teare I. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–7.
Article
CAS
Google Scholar
Grattan S, Grieve C. Salinity mineral nutrient relations in horticultural crops: a review. Sci Hortic (Netherlands). 1999;78(1-4):127–57.
Article
CAS
Google Scholar
Stewart RR, Bewley JD. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 1980;65(2):245–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16(3):144–58.
CAS
Google Scholar
Eberhardt MV, Lee CY, Liu RH. Antioxidant activity of fresh apples. Nature. 2000;405(6789):903–4.
Article
CAS
PubMed
Google Scholar
Li ZQ, Xing W, Luo P, Zhang FJ, Jin XL, Zhang MH. Comparative transcriptome analysis of Rosa chinensis 'Slater's crimson China' provides insights into the crucial factors and signaling pathways in heat stress response. Plant Physiol Biochem. 2019;142:312–31.
Article
CAS
PubMed
Google Scholar
Li ZQ, Li JT, Bing J, Zhang GF. The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Yi Chuan Hereditas. 2019;41(6):534–47.
PubMed
Google Scholar
Estaji A, Roosta HR, Rezaei SA, Hosseini SS, Niknam F. Morphological, physiological and phytochemical response of different Satureja hortensis L. accessions to salinity in a greenhouse experiment. J Appl Res Med Aromat Plants. 2018;10:25–33.
Google Scholar
Akbari M, Katam R, Husain R, Farajpour M, Mazzuca S, Mahna N. Sodium chloride induced stress responses of antioxidative activities in leaves and roots of pistachio rootstock. Biomolecules. 2020;10(2):189.
Article
CAS
PubMed Central
Google Scholar
López-Pérez L, del Carmen M-BM, Maurel C, Carvajal M. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry. 2009;70(4):492–500.
Article
PubMed
CAS
Google Scholar
Li X, Wan S, Kang Y, Chen X, Chu L. Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents. Agric Manage Water. 2016;163:180–9.
Article
Google Scholar
Khan NA, Syeed S, Masood A, Nazar R, Iqbal N. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol. 2010;1(1):e1.
Article
CAS
Google Scholar
Palma F, López-Gómez M, Tejera N, Lluch C. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci. 2013;208:75–82.
Article
CAS
PubMed
Google Scholar
Fatemi R, Aboutalebi A. Evaluation the interaction of salinity and salicylic acid on sweet basil (Ocimum basilicum) properties. Ann Biol Res. 2012;3(11):5106–9.
CAS
Google Scholar
Hamada A. Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostlinna Vyroba-UZPI (Czech Republic). 2001;47:444–50.
Hussein M, Balbaa L, Gaballah M. Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci. 2007;3(4):321–8.
CAS
Google Scholar
Larqué-Saavedra A, Martin-Mex R. Effects of salicylic acid on the bioproductivity of plants. In: Salicylic acid: a plant hormone. Dordrecht: Springer; 2007. p. 15–23.
Karimi G, Ghorbanli M, Heidari H, Khavari Nejad R, Assareh M. The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrata. Biol Plant. 2005;49(2):301–4.
Article
Google Scholar
Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol. 2010;167(15):1248–52.
Article
CAS
PubMed
Google Scholar
Hura T, Szewczyk-Taranek B, Hura K, Nowak K, Pawłowska B. Physiological responses of Rosa rubiginosa to saline environment. Water Air Soil Pollut. 2017;228(2):1–11.
Article
CAS
Google Scholar
El-Tayeb M, El-Enany A, Ahmed N. Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regul. 2006;50(2):191–9.
Article
CAS
Google Scholar
Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ Sci Pollut Res. 2020;27(29):36939–53.
Article
CAS
Google Scholar
El-Tayeb M. Response of barley grains to the interactive e. ect of salinity and salicylic acid. Plant Growth Regul. 2005;45(3):215–24.
Article
CAS
Google Scholar
Agarwal PK, Shukla PS, Gupta K, Jha B. Bioengineering for salinity tolerance in plants: state of the art. Molecular biotech. 2013;54(1):102–23.
Article
CAS
Google Scholar
Estaji A, Niknam F. Foliar salicylic acid spraying effect’on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agric Water Manag. 2020;234:106116.
Article
Google Scholar
Bajji M, Kinet J-M, Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002;36(1):61–70.
Article
CAS
Google Scholar
Akbari M, Mahna N, Ramesh K, Bandehagh A, Mazzuca S. Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity. Protoplasma. 2018;255(5):1349–62.
Article
CAS
PubMed
Google Scholar
Shoresh M, Spivak M, Bernstein N. Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radicals Biol Med. 2011;51(6):1221–34.
Article
CAS
Google Scholar
Reezi S, Kalantari MBS, Okhovvat SM, Jeong BR. Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt-stressed cut rose (Rosa xhybrida L.) hot lady. Afr J Biotechnol. 2009;8(8):1502–8.
CAS
Google Scholar
Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, et al. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol. 2006;141(3):910–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Hu L, Zhang L, Pan X, Hu X. Exogenous spermidine is enhancing tomato tolerance to salinity–alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biol. 2015;15(1):1–17.
Article
CAS
Google Scholar
Poór P, Gémes K, Horváth F, Szepesi A, Simon M, Tari I. Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol. 2011;13(1):105–14.
Article
PubMed
CAS
Google Scholar
Hamani AKM, Wang G, Soothar MK, Shen X, Gao Y, Qiu R, et al. Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol. 2020;20(1):1–14.
Article
CAS
Google Scholar
Misra N, Saxena P. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci. 2009;177(3):181–9.
Article
CAS
Google Scholar
Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3(1):2–20.
Article
CAS
PubMed
Google Scholar
Kumar D, Mishra DS, Chakraborty B, Kumar P. Pericarp browning and quality management of litchi fruit by antioxidants and salicylic acid during ambient storage. J Food Sci Technol. 2013;50(4):797–802.
Article
CAS
PubMed
Google Scholar
Marchiosi R, dos Santos WD, Constantin RP, de Lima RB, Soares AR, Finger-Teixeira A, et al. Foletto-Felipe MdP, Abrahão J: biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem Rev. 2020;19:865–906.
Article
CAS
Google Scholar
Ahmad P, Sarwat M, Sharma S. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol. 2008;51(3):167–73.
Article
CAS
Google Scholar
Mansour MMF, Salama KHA. Proline and abiotic stresses: Responses and adaptation. In: Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II: Springer; 2020. p. 357–97.
Google Scholar
Matysik J, Alia BB, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci. 2002;82(5):525–32.
Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59(2):206–16.
Article
CAS
Google Scholar
Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7(11):1456–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gharib FA. Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. Int J Agr Biol. 2006;4:485–92.
Google Scholar
Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot. 2011;62(10):3321–38.
Article
CAS
PubMed
Google Scholar
Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol. 2007;164(6):728–36.
Article
CAS
PubMed
Google Scholar
Vázquez J, Grillitsch K, Daum G, Mas A, Beltran G, Torija MJ. The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts. Food Microbiol. 2019;78:143–54.
Article
PubMed
CAS
Google Scholar
Li G, Wan S, Zhou J, Yang Z, Qin P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crops Prod. 2010;31(1):13–9.
Article
CAS
Google Scholar
Raman V, Ravi S. Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiol Plant. 2011;33(3):1043–9.
Article
CAS
Google Scholar
Eraslan F, Inal A, Gunes A, Alpaslan M. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic. 2007;113(2):120–8.
Article
CAS
Google Scholar
Janah I, Elhasnaoui A, Issa Ali O, Lamnai K, Aissam S, Loutfi K. Physiochemical responses of Stevia rebaudiana Bertoni subjected to sodium chloride (NaCl) salinity and exogenous salicylic acid application. Gesunde Pflanzen. 2021;73(4):509–20.
Article
CAS
Google Scholar
Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005;60(3):324–49.
Article
CAS
PubMed
Google Scholar
Bradford K, Hsiao T. Physiological responses to moderate water stress. In: Physiological plant ecology II: Springer; 1982. p. 263–324.
Chapter
Google Scholar
Robinson S, Jones G. Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Funct Plant Biol. 1986;13(5):659–68.
Article
CAS
Google Scholar
Chen TH, Murata N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ. 2011;34(1):1–20.
Article
PubMed
CAS
Google Scholar
Homayoonzadeh M, Moeini P, Talebi K, Roessner U, Hosseininaveh V. Antioxidant system status of cucumber plants under pesticides treatment. Acta Physiol Plant. 2020;42(11):1–11.
Article
CAS
Google Scholar
Hussain M, Malik M, Farooq M, Ashraf M, Cheema M. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci. 2008;194(3):193–9.
Article
CAS
Google Scholar
Dutt MJ, Lee KH. Proteomic analysis. Curr Opin Biotechnol. 2000;11(2):176–9.
Article
CAS
PubMed
Google Scholar
Rubio J, Souza M, Smith R. Overview of flotation as a wastewater treatment technique. Miner Eng. 2002;15(3):139–55.
Article
CAS
Google Scholar
Kusvuran S, Kiran S, Ellialtioglu SS. Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. Abiotic and biotic stress in plants-recent advances and future perspectives. 1st ed. London: InTech; 2016. p. 481–503.
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30.
Article
CAS
PubMed
Google Scholar
Laspina N, Groppa M, Tomaro M, Benavides M. Nitric oxide protects sunflower leaves against cd-induced oxidative stress. Plant Sci. 2005;169(2):323–30.
Article
CAS
Google Scholar
Wahome P, Jesch H, Grittner I. Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis ‘Major’and R. rubiginosa. Sci Hortic. 2001;87(3):207–16.
Article
CAS
Google Scholar
Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218(1):1–14.
Article
CAS
PubMed
Google Scholar
Soundararajan P, Manivannan A, Ko CH, Jeong BR. Silicon enhanced redox homeostasis and protein expression to mitigate the salinity stress in Rosa hybrida ‘rock fire’. J Plant Growth Regul. 2018;37(1):16–34.
Article
CAS
Google Scholar
Ali E, Bazaid S, Hassan F. Salinity tolerance of Taif roses by gibberellic acid (GA3). Int J Sci Res. 2014;3(11):184–92.
Google Scholar
He Y, Zhu Z. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biol Plant. 2008;52(4):792.
Article
CAS
Google Scholar
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.
Article
CAS
PubMed
Google Scholar
Al-Whaibi MH, Siddiqui MH, Basalah MO. Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma. 2012;249(3):769–78.
Article
CAS
PubMed
Google Scholar
Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci Res. 2004;14(2):93–107.
Article
CAS
Google Scholar
Farooq M, Wahid A, Lee DJ, Cheema S, Aziz T. Drought stress: comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agron Crop Sci. 2010;196(5):336–45.
Article
CAS
Google Scholar
Shi H, Jiang C, Ye T, Tan D-X, Reiter RJ, Zhang H, et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass Cynodon dactylon (L) by exogenous melatonin. J Exp Bot. 2015;66(3):681–94.
Article
CAS
PubMed
Google Scholar
Spencer JD, Gibbons NC, Rokos H, Peters EM, Wood JM, Schallreuter KU. Oxidative stress via hydrogen peroxide affects proopiomelanocortin peptides directly in the epidermis of patients with vitiligo. J Invest Dermatol. 2007;127(2):411–20.
Article
CAS
PubMed
Google Scholar
Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetic Molecul Biol. 2012;35(4):1011–9.
Article
CAS
Google Scholar
Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35(2):259–70.
Article
CAS
PubMed
Google Scholar
Akram NA, Shafiq F, Ashraf M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci. 2017;8:613.
Article
PubMed
PubMed Central
Google Scholar
Csiszár J, Lantos E, Tari I, Madosa E, Wodala B, Vashegyi Á, et al. Antioxidant enzyme activities in Allium species and their cultivars under water stress. Plant Soil Environ. 2007;53(12):517.
Article
Google Scholar
Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol. 2001;42(5):462–8.
Article
CAS
PubMed
Google Scholar
Tripathi BN, Bhatt I, Dietz K-J. Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma. 2009;235(1):3–15.
Article
CAS
PubMed
Google Scholar
Li L, Yi H. Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol Biochem. 2012;58:46–53.
Article
CAS
PubMed
Google Scholar
Kim S-Y, Lim J-H, Park M-R, Kim Y-J, Park T-I, Seo Y-W, et al. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Rep. 2005;38(2):218–24.
Article
CAS
Google Scholar
Gomez J, Jimenez A, Olmos E, Sevilla F. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv Puget) chloroplasts. J Exp Bot. 2004;55(394):119–30.
Article
CAS
PubMed
Google Scholar
Attia H, Karray N, Msilini N, Lachaâl M. Effect of salt stress on gene expression of superoxide dismutases and copper chaperone in Arabidopsis thaliana. Biol Plant. 2011;55(1):159–63.
Article
CAS
Google Scholar
Esfandiari E, Abbasi A, Enayati W, Mosavi S. Different behavior of root and leaf in grass pea landraces in response to oxidative stress caused by salinity. J Agri Sci. 2011;20(4):65–76.
Morris K, Mackerness SAH, Page T, John CF, Murphy AM, Carr JP, et al. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J. 2000;23(5):677–85.
Article
CAS
PubMed
Google Scholar
El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AM, Ali HM, Elshikh MS. Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Front Plant Physiol. 2017;8:716.
Article
Google Scholar
Ranieri A, Castagna A, Baldan B, Soldatini GF. Iron deficiency differently affects peroxidase isoforms in sunflower. J Exp Bot. 2001;52(354):25–35.
Article
CAS
PubMed
Google Scholar
Bilal HM, Islam H, Adnan M, Tahir R, Zulfiqar R, Umer MS, et al. Effect of salinity stress on growth, yield and quality of roses: a review. Int J Environ Sci Nat Res. 2020;25(1):37–41.
Google Scholar
Milla MAR, Maurer A, Huete AR, Gustafson JP. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 2003;36(5):602–15.
Article
CAS
Google Scholar