Dey P, Chaudhuri TK. Pharmacological aspects of Nerium indicum Mill: a comprehensive review. Pharmacogn Rev. 2014;8:156.
Article
PubMed
PubMed Central
Google Scholar
Tamboli, R. Effect of vehicle air pollution on leaf structure of Nerium indicum L. plant on NH-4 divider. Advances in Plant Sciences. 2013;26:435–438.
Ma D, Chen Y, Lai Y, Zhang Z, Li X, Zhang D. Diverse resourcing of Nerium indicum leaves for bio-utilization. Therm Sci. 2020;24:1785–93.
Article
CAS
Google Scholar
Mulas, M.; Perinu, B.; Francesconi, A.H.D. Evaluation of Spontaneous Oleander (Nerium oleander L.) as a Medicinal Plant. Journal of Herbs, Spices & Medicinal Plants 2002, 9, 121–125.
West, E. Witches' broom of Oleander. Witches' broom of Oleander. 1937.
Mardi M, Karimi Farsad L, Gharechahi J, Salekdeh G.H. In-depth transcriptome sequencing of Mexican lime trees infected with Candidatus Phytoplasma aurantifolia. PLoS One. 2015;10:e0130425.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghosh D, Das A, Singh S, Singh S, Ahlawat Y. Occurrence of Witches’-Broom, a new phytoplasma disease of acid lime (Citrus aurantifolia) in India. Plant Dis. 1999;83:302–302.
Article
CAS
PubMed
Google Scholar
Al-Sakeiti M, Al-Subhi A, Al-Saady N, Deadman M. First report of witches’-broom disease of sesame (Sesamum Indicum) in Oman. Plant Dis. 2005;89:530–530.
Article
CAS
PubMed
Google Scholar
Hiruki, C. Paulownia witches'-broom disease important in East Asia. In Proceedings of International Symposium on Urban Tree Health 496; pp. 63–68.
Win NKK, Lee S-Y, Bertaccini A, Namba S, Jung H-Y. ‘Candidatus Phytoplasma balanitae’associated with witches’ broom disease of Balanites triflora. Int J Syst Evol Microbiol. 2013;63:636–40.
Article
CAS
PubMed
Google Scholar
Evans H. Pleomorphism in Crinipellis perniciosa, causal agent of witches’ broom disease of cocoa. Trans Br Mycol Soc. 1980;74:515–23.
Article
Google Scholar
Scarpari L, Meinhardt L, Mazzafera P, Pomella A, Schiavinato M, Cascardo J, Pereira G. Biochemical changes during the development of witches’ broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa. J Exp Bot. 2005;56:865–77.
Article
CAS
PubMed
Google Scholar
Liu R, Dong Y, Fan G, Zhao Z, Deng M, Cao X, Niu S. Discovery of genes related to witches broom disease in Paulownia tomentosa× Paulownia fortunei by a de novo assembled transcriptome. PLoS ONE. 2013;8: e80238.
Article
PubMed
PubMed Central
Google Scholar
Mollayi S, Zadali R, Farzaneh M, Ghassempour A. Metabolite profiling of Mexican lime (Citrus aurantifolia) leaves during the progression of witches’ broom disease. Phytochem Lett. 2015;13:290–6.
Article
CAS
Google Scholar
Mollayi S, Farzaneh M, Ghanati F, Aboul-Enein HY, Ghassempour A. Study of catechin, epicatechin and their enantiomers during the progression of witches’ broom disease in Mexican lime (Citrus aurantifolia). Physiol Mol Plant Pathol. 2016;93:93–8.
Article
CAS
Google Scholar
Jaiswal S, Jadhav PV, Jasrotia RS, Kale PB, Kad SK, Moharil MP, Dudhare MS, Kheni J, Deshmukh AG, Mane SS. Transcriptomic signature reveals mechanism of flower bud distortion in witches’-broom disease of soybean (Glycine max). BMC Plant Biol. 2019;19:1–12.
Article
CAS
Google Scholar
Guo, J.; Huang, Z.; Sun, J.; Cui, X.; Liu, Y. Research Progress and Future Development Trends in Medicinal Plant Transcriptomics. Frontiers in plant science 2021, 12.
Panda A, Parida AK, Rangani J. Advancement of metabolomics techniques and their applications in plant science: Current scenario and future prospective. In Plant Metabolites and Regulation Under Environmental Stress: Elsevier; 2018. p. 1–36.
Google Scholar
Krysan PJ, Colcombet J. Cellular complexity in MAPK signaling in plants: Questions and emerging tools to answer them. Front Plant Sci. 2018;9:1674.
Article
PubMed
PubMed Central
Google Scholar
Hettenhausen C, Schuman MC, Wu J. MAPK signaling: a key element in plant defense response to insects. Insect science. 2015;22:157–64.
Article
CAS
PubMed
Google Scholar
Shah J. The salicylic acid loop in plant defense. Curr Opin Plant Biol. 2003;6:365–71.
Article
CAS
PubMed
Google Scholar
Aldon D, Mbengue M, Mazars C, Galaud J-P. Calcium signalling in plant biotic interactions. Int J Mol Sci. 2018;19:665.
Article
PubMed Central
CAS
Google Scholar
Misas-Villamil JC, van der Hoorn RA, Doehlemann G. Papain-like cysteine proteases as hubs in plant immunity. New Phytol. 2016;212:902–7.
Article
CAS
PubMed
Google Scholar
Balakireva AV, Zamyatnin AA. Indispensable role of proteases in plant innate immunity. Int J Mol Sci. 2018;19:629.
Article
PubMed Central
CAS
Google Scholar
Minina EA, Moschou PN, Bozhkov PV. Limited and digestive proteolysis: crosstalk between evolutionary conserved pathways. New Phytol. 2017;215:958–64.
Article
CAS
PubMed
Google Scholar
Hayama R, Yang P, Valverde F, Mizoguchi T, Furutani-Hayama I, Vierstra RD, Coupland G. Ubiquitin carboxyl-terminal hydrolases are required for period maintenance of the circadian clock at high temperature in Arabidopsis. Sci Rep. 2019;9:1–12.
Article
CAS
Google Scholar
Bleeker PM, Spyropoulou EA, Diergaarde PJ, Volpin H, De Both MT, Zerbe P, Bohlmann J, Falara V, Matsuba Y, Pichersky E. RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol Biol. 2011;77:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J. 2000;23:481–8.
Article
CAS
PubMed
Google Scholar
Prerostova S, Dobrev PI, Gaudinova A, Knirsch V, Körber N, Pieruschka R, Fiorani F, Brzobohatý B, Spichal L, Humplik J. Cytokinins: Their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. Front Plant Sci. 2018;9:655.
Article
PubMed
PubMed Central
Google Scholar
Lisón P, Rodrigo I, Conejero V. A novel function for the cathepsin D inhibitor in tomato. Plant Physiol. 2006;142:1329–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Takagi D, Miyake C. Proton gradient regulation 5 supports linear electron flow to oxidize photosystem I. Physiol Plant. 2018;164:337–48.
Article
CAS
PubMed
Google Scholar
Reynolds JJ, Bicknell LS, Carroll P, Higgs MR, Shaheen R, Murray JE, Papadopoulos DK, Leitch A, Murina O, Tarnauskaitė Ž. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism. Nat Genet. 2017;49:537–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardan R, Rapoport G, Débarbouillé M. Expression of therocDEFOperon Involved in Arginine Catabolism inBacillus subtilis. J Mol Biol. 1995;249:843–56.
Article
CAS
PubMed
Google Scholar
Yoshihara T, Spalding EP, Iino M. A t LAZY 1 is a signaling component required for gravitropism of the A rabidopsis thaliana inflorescence. Plant J. 2013;74:267–79.
Article
CAS
PubMed
Google Scholar
Eser BE, Zhang X, Chanani PK, Begley TP, Ealick SE. From suicide enzyme to catalyst: the iron-dependent sulfide transfer in Methanococcus jannaschii thiamin thiazole biosynthesis. J Am Chem Soc. 2016;138:3639–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang W, Jiang D, Jiang J, He Y. A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J. 2010;62:663–73.
Article
CAS
PubMed
Google Scholar
Craig EA, Stevens MV, Vaillancourt RR, Camenisch TD. MAP3Ks as central regulators of cell fate during development. Developmental dynamics: an official publication of the American Association of Anatomists. 2008;237:3102–14.
Article
CAS
Google Scholar
Alefounder P, Baldwin S, Perham R, Short N. Cloning, sequence analysis and over-expression of the gene for the class II fructose 1, 6-bisphosphate aldolase of Escherichia coli. Biochemical Journal. 1989;257:529–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao, T.-H.; Barber, G. Purification of guanosine 5′-diphosphate d-mannose oxidoreductase from Phaseolus vulgaris. Biochimica et Biophysica Acta (BBA)-Enzymology 1972, 276, 85–93.
Weis C, Hückelhoven R, Eichmann R. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. J Exp Bot. 2013;64:3855–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stumpf P, Horecker B. The role of xylulose 5-phosphate in xylose metabolism of Lactobacillus pentosus. J Biol Chem. 1956;218:753–68.
Article
CAS
PubMed
Google Scholar
Reimann R, Kost B, Dettmer J. Tetraspanins in plants. Front Plant Sci. 2017;8:545.
Article
PubMed
PubMed Central
Google Scholar
Zhao, J.; Liu, M. VARIATION OF MINERAL ELEMENT CONTENTS IN CHINESE JUJUBE WITH WITCHES'BROOM DISEASE. In Proceedings of I International Jujube Symposium 840; pp. 399–404.
Naito T, Tanaka M, Taba S, Toyosato T, Oshiro A, Takaesu K, Hokama K, Usugi T, Kawano S. Occurrence of chrysanthemum virescence caused by “Candidatus Phytoplasma aurantifolia” in Okinawa. J Gen Plant Pathol. 2007;73:139–41.
Article
Google Scholar
Mohali S, Slippers B, Wingfield MJ. Identification of Botryosphaeriaceae from Eucalyptus, Acacia and Pinus in Venezuela. Fungal Diversity. 2007;25:103–25.
Google Scholar
Zhou, S.; Stanosz, G.R. Relationships among Botryosphaeria species and associated anamorphic fungi inferred from the analyses of ITS and 5.8 S rDNA sequences. Mycologia 2001, 93, 516–527.
Phillips A, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald J, Crous PW. The Botryosphaeriaceae: genera and species known from culture. Stud Mycol. 2013;76:51–167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rashmi M, Kushveer J, Sarma V. A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere. 2019;10:798–1079.
Article
Google Scholar
Gardner, D.E. Botryosphaeria mamane sp. nov. associated with witches'-brooms on the endemic forest tree Sophora chrysophylla in Hawaii. Mycologia 1997;89:298–303.
Correia, K.C.; Câmara, M.P.S.; Barbosa, M.A.G.; Sales Jr, R.; Agusti-Brisach, C.; Gramaje, D.; Leon, M.; Garcia-Jimenez, J.; Abad-Campos, P.; Armengol, J. Fungal trunk pathogens associated with table grape decline in North-eastern Brazil. Phytopathologia Mediterranea 2013, 380–387.
Medeiros F, Pomella A, De Souza J, Niella G, Valle R, Bateman R, Fravel D, Vinyard B, Hebbar P. A novel, integrated method for management of witches’ broom disease in Cacao in Bahia. Brazil Crop Protection. 2010;29:704–11.
Article
CAS
Google Scholar
Sousa Filho HR, de Jesus RM, Bezerra MA, Santana GM, de Santana RO. History, dissemination, and field control strategies of cocoa witches’ broom. Plant Pathol. 2021;70:1971–8.
Article
Google Scholar
Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol. 2013;51:245–66.
Article
CAS
PubMed
Google Scholar
Zhang J, Zhou J-M. Plant immunity triggered by microbial molecular signatures. Mol Plant. 2010;3:783–93.
Article
CAS
PubMed
Google Scholar
Liu Z, Zhao Z, Xue C, Wang L, Wang L, Feng C, Zhang L, Yu Z, Zhao J, Liu M. Three Main genes in the MAPK Cascade involved in the Chinese jujube-Phytoplasma interaction. Forests. 2019;10:392.
Article
Google Scholar
Brader G, Djamei A, Teige M, Palva ET, Hirt H. The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis. Mol Plant Microbe Interact. 2007;20:589–96.
Article
CAS
PubMed
Google Scholar
Li X, Zhang Y, Huang L, Ouyang Z, Hong Y, Zhang H, Li D, Song F. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol. 2014;14:1–17.
Article
Google Scholar
Awwad F, Bertrand G, Grandbois M, Beaudoin N. Reactive oxygen species alleviate cell death induced by thaxtomin A in Arabidopsis thaliana cell cultures. Plants. 2019;8:332.
Article
CAS
PubMed Central
Google Scholar
Gechev TS, Hille J. Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol. 2005;168:17–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, He C. A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol. 2017;11:192–204.
Article
CAS
PubMed
Google Scholar
Takatsuji, H.; Jiang, C.-J. Plant hormone crosstalks under biotic stresses. Phytohormones: a window to metabolism, signaling and biotechnological applications 2014, 323–350.
Sung Y-C, Lin C-P, Hsu H-J, Chen Y-L, Chen J-C. Silencing of CrNPR1 and CrNPR3 alters plant susceptibility to periwinkle leaf yellowing phytoplasma. Front Plant Sci. 2019;10:1183.
Article
PubMed
PubMed Central
Google Scholar
Dos Santos EC, Pirovani CP, Correa SC, Micheli F, Gramacho KP. The pathogen Moniliophthora perniciosa promotes differential proteomic modulation of cacao genotypes with contrasting resistance to witches broom disease. BMC Plant Biol. 2020;20:1–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye X, Wang H, Chen P, Fu B, Zhang M, Li J, Zheng X, Tan B, Feng J. Combination of iTRAQ proteomics and RNA-seq transcriptomics reveals multiple levels of regulation in phytoplasma-infected Ziziphus jujuba Mill. Horticulture research. 2017;4:1–13.
Article
CAS
Google Scholar
Fan G, Xu E, Deng M, Zhao Z, Niu S. Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to paulownia witches’ broom phytoplasma infection. Genes & Genomics. 2015;37:913–29.
Article
CAS
Google Scholar
Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 2003;33:221–33.
Article
CAS
PubMed
Google Scholar
Zhao, Y.; Sun, Q.; Davis, R.; Lee, I.-M.; Liu, Q. First Report of Witches'-Broom Disease in a Cannabis spp. in China and Its Association with a Phytoplasma of Elm Yellows Group (16SrV). Plant Disease 2007, 91, 227–227.
Staskawicz BJ. Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol. 2001;125:73–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Du L, Poovaiah B. Calcium signaling and biotic defense responses in plants. Plant Signal Behav. 2014;9: e973818.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chang, Y.; Li, B.; Shi, Q.; Geng, R.; Geng, S.; Liu, J.; Zhang, Y.; Cai, Y. Comprehensive Analysis of Respiratory Burst Oxidase Homologs (Rboh) Gene Family and Function of GbRboh5/18 on Verticillium Wilt Resistance in Gossypium barbadense. Frontiers in genetics 2020, 11.
Rossi FR, Gárriz A, Marina M, Romero FM, Gonzalez ME, Collado IG, Pieckenstain FL. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Mol Plant Microbe Interact. 2011;24:888–96.
Article
CAS
PubMed
Google Scholar
Yeh Y-H, Chang Y-H, Huang P-Y, Huang J-B, Zimmerli L. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front Plant Sci. 2015;6:322.
Article
PubMed
PubMed Central
Google Scholar
Yoda H, Ogawa M, Yamaguchi Y, Koizumi N, Kusano T, Sano H. Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Mol Genet Genomics. 2002;267:154–61.
Article
CAS
PubMed
Google Scholar
da Hora Junior, B.T.; de Faria Poloni, J.; Lopes, M.A.; Dias, C.V.; Gramacho, K.P.; Schuster, I.; Sabau, X.; Cascardo, J.C.D.M.; Di Mauro, S.n.M.Z.; da Silva Gesteira, A. Transcriptomics and systems biology analysis in identification of specific pathways involved in cacao resistance and susceptibility to witches' broom disease. Molecular Biosystems 2012, 8, 1507–1519.
Chen, P.; Chen, L.; Ye, X.; Tan, B.; Zheng, X.; Cheng, J.; Wang, W.; Yang, Q.; Zhang, Y.; Li, J. Phytoplasma effector Zaofeng6 induces shoot proliferation by decreasing the expression of ZjTCP7 in Ziziphus jujuba. Horticulture research 2022, 9.
Jones JD, Dangl JL. The plant immune system nature. 2006;444:323–9.
CAS
PubMed
Google Scholar
Yang H, Zhao T, Jiang J, Chen X, Zhang H, Liu G, Zhang D, Du C, Wang S, Xu X. Transcriptome analysis of the Sm-mediated hypersensitive response to Stemphylium lycopersici in tomato. Front Plant Sci. 2017;8:1257.
Article
PubMed
PubMed Central
Google Scholar
Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L. The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol. 2002;3:371–90.
Article
CAS
PubMed
Google Scholar
Zhang, G.; Zhang, Y.; Xu, J.; Niu, X.; Qi, J.; Tao, A.; Zhang, L.; Fang, P.; Lin, L.; Su, J. The CCoAOMT1 gene from jute (Corchorus capsularis L.) is involved in lignin biosynthesis in Arabidopsis thaliana. Gene 2014, 546, 398–402.
Tronchet M, Balague C, Kroj T, Jouanin L, Roby D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol. 2010;11:83–92.
Article
CAS
PubMed
Google Scholar
Nawaz, M.A.; Rehman, H.M.; Imtiaz, M.; Baloch, F.S.; Lee, J.D.; Yang, S.H.; Lee, S.I.; Chung, G. Systems identification and characterization of cell wall reassembly and degradation related genes in Glycine max (L.) Merill, a bioenergy legume. Sci Rep 2017, 7, 1–16.
Anderson NA, Bonawitz ND, Nyffeler K, Chapple C. Loss of ferulate 5-hydroxylase leads to Mediator-dependent inhibition of soluble phenylpropanoid biosynthesis in Arabidopsis. Plant Physiol. 2015;169:1557–67.
CAS
PubMed
PubMed Central
Google Scholar
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot. 2017;68:4013–28.
Article
CAS
PubMed
Google Scholar
Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 2005;7:581–91.
Article
CAS
PubMed
Google Scholar
Mata-Pérez C, Sánchez-Calvo B, Begara-Morales JC, Luque F, Jiménez-Ruiz J, Padilla MN, Fierro-Risco J, Valderrama R, Fernández-Ocaña A, Corpas FJ. Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Front Plant Sci. 2015;6:122.
Article
PubMed
PubMed Central
Google Scholar
Puentes A, Zhao T, Lundborg L, Björklund N, Borg-Karlson A-K. Variation in methyl jasmonate-induced defense among Norway spruce clones and trade-offs in resistance against a fungal and an insect pest. Front Plant Sci. 2021;12:962.
Article
Google Scholar
Sweetlove LJ, Beard KF, Nunes-Nesi A, Fernie AR, Ratcliffe RG. Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci. 2010;15:462–70.
Article
CAS
PubMed
Google Scholar
Fernie AR, Carrari F, Sweetlove LJ. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol. 2004;7:254–61.
Article
CAS
PubMed
Google Scholar
Pétriacq P, de Bont L, Hager J, Didierlaurent L, Mauve C, Guérard F, Noctor G, Pelletier S, Renou JP, Tcherkez G. Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1. Plant J. 2012;70:650–65.
Article
PubMed
CAS
Google Scholar
Miwa A, Sawada Y, Tamaoki D, Hirai MY, Kimura M, Sato K, Nishiuchi T. Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Sci Rep. 2017;7:1–12.
Article
CAS
Google Scholar
Zhang X, Mou Z. Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. Plant J. 2009;57:302–12.
Article
CAS
PubMed
Google Scholar
Katoh A, Hashimoto T. Molecular biology of pyridine nucleotide and nicotine biosynthesis. Front Biosci. 2004;9:1577–86.
Article
CAS
PubMed
Google Scholar
Zafar, S.A.; Zaidi, S.S.-e.-A.; Gaba, Y.; Singla-Pareek, S.L.; Dhankher, O.P.; Li, X.; Mansoor, S.; Pareek, A. Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. Journal of Experimental Botany 2020, 71, 470–479.
Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA-and rRNA-based microbial community composition. Appl Environ Microbiol. 2000;66:5488–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monard C, Gantner S, Stenlid J. Utilizing ITS1 and ITS2 to study environmental fungal diversity using pyrosequencing. FEMS Microbiol Ecol. 2013;84:165–75.
Article
CAS
PubMed
Google Scholar
Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.
Article
CAS
PubMed
Google Scholar
Zhu H, Li B, Ding N, Hua Z, Jiang X. A Case Study on Microbial Diversity Impacts of a Wastewater Treatment Plant to the Receiving River. Journal of Geoscience and Environment Protection. 2021;9:206–20.
Article
Google Scholar
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Article
CAS
PubMed
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Article
CAS
PubMed
Google Scholar
Lan Y, Wang Q, Cole JR, Rosen GL. Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS ONE. 2012;7: e32491.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.
Article
CAS
PubMed
Google Scholar
Park J, Kim H-J, Huh YH, Kim KW. Ultrastructure of phytoplasma-infected jujube leaves with witches’ broom disease. Micron. 2021;148: 103108.
Article
CAS
PubMed
Google Scholar
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng Y, Li J, Wu S, Zhu Y, Chen Y, He F. Integrated nr database in protein annotation system and its localization. Comput Eng. 2006;32:71–2.
Google Scholar
Apweiler R. Functional information in SWISS-PROT: the basis for large-scale characterisation of protein sequences. Brief Bioinform. 2001;2:9–18.
Article
CAS
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 2004;5:1–28.
Article
Google Scholar
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32:D115–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL. The Pfam protein families database. Nucleic Acids Res. 2002;30:276–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:1–16.
Article
Google Scholar
Varet H, Brillet-Guéguen L, Coppée J-Y, Dillies M-A. SARTools: a DESeq2-and edgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS ONE. 2016;11: e0157022.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57:289–300.
Google Scholar
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:1–7.
Article
Google Scholar
Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.-Y.; Wei, L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic acids research 2011, 39, W316-W322.
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant. 2016;9:1667–70.
Article
CAS
PubMed
Google Scholar
Zhou Z, Gao H, Ming J, Ding Z, Zhan R. Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying Peel and pulp color formation. BMC Genomics. 2020;21:1–17.
Article
CAS
Google Scholar
Chen, L.; Wu, Q.; He, W.; He, T.; Wu, Q.; Miao, Y. Combined De Novo Transcriptome and Metabolome Analysis of Common Bean Response to Fusarium oxysporum f. sp. phaseoli Infection. Int J Mol Sci 2019, 20, 6278.