Bradshaw H, Ceulemans R, Davis J, Stettler R. Emerging model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul. 2000;19(3):306–13.
Article
CAS
Google Scholar
Wullschleger SD, Jansson S, Taylor G. Genomics and forest biology: Populus emerges as the perennial favorite. Plant Cell. 2002;14(11):2651–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma J, Wan D, Duan B, Bai X, Bai Q, Chen N, et al. Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnol J. 2019;17(2):451–60.
Article
CAS
PubMed
Google Scholar
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & gray). Science. 2006;313(5793):1596–604.
Article
CAS
PubMed
Google Scholar
Yang Y, Li R, Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 2000;22(6):543–51.
Article
CAS
PubMed
Google Scholar
Chen J, Wang Y, Wang F, Yang J, Gao M, Li C, et al. The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels. Plant Cell. 2015;27(3):711–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chapman S, Oparka K, Roberts A. New tools for in vivo fluorescence tagging. Curr Opin Plant Biol. 2005;8(6):565–73.
Article
CAS
PubMed
Google Scholar
Jennifer LS, Patterson GH. Development and use of fluorescent protein markers in living cells. Science. 2003;300(5616):87–91.
Article
CAS
Google Scholar
Ueki S, Lacroix B, Krichevsky A, Lazarowitz SG, Citovsky V. Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nat Protoc. 2009;4(1):71–7.
Article
CAS
PubMed
Google Scholar
Liu J, Nannas NJ, Fu FF, Shi J, Aspinwall B, Parrott WA, et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell. 2019;31(2):368–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Q, Lai H. Gene delivery into plant cells for recombinant protein production. Biomed Res Int. 2015;2015:932161.
Vaghchhipawala Z, Rojas CM, Senthil-Kumar M, Mysore KS. Agroinoculation and agroinfiltration: simple tools for complex gene function analyses. Methods Mol Biol. 2011;678:65–76.
Article
CAS
PubMed
Google Scholar
Schob H, Kunz C, Meins F Jr. Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet. 1997;256(5):581–5.
Article
CAS
PubMed
Google Scholar
Kopertekh L, Schiemann J. Agroinfiltration as a tool for transient expression of cre recombinase in vivo. Transgenic Res. 2005;14(5):793–8.
Article
CAS
PubMed
Google Scholar
Li JF, Park E, von Arnim AG, Nebenfuhr A. The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods. 2009;5:6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wroblewski T, Tomczak A, Michelmore R. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J. 2005;3(2):259–73.
Article
CAS
PubMed
Google Scholar
D'Aoust M-A, Lerouge P, Busse U, Bilodeau P, Vézina L-P. Efficient and reliable production of pharmaceuticals in alfalfa. In: Fischer R, Schillberg S, editors. Molecular farming plant-made pharmaceuticals and technical proteins. Oxford: Wiley; 2005. p. 1–12.
Google Scholar
Orzaez D, Mirabel S, Wieland WH, Granell A. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol. 2006;140(1):3–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science. 2003;301(5637):1230–3.
Article
CAS
PubMed
Google Scholar
Ramos-Sanchez JM, Triozzi PM, Moreno-Cortes A, Conde D, Perales M, Allona I. Real-time monitoring of PtaHMGB activity in poplar transactivation assays. Plant Methods. 2017;13:50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bendahmane A, Querci M, Kanyuka K, Baulcombe DC. Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J. 2000;21(1):73–81.
Article
CAS
PubMed
Google Scholar
Van der Hoorn RA, Laurent F, Roth R, De Wit PJ. Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant-Microbe Interact. 2000;13(4):439–46.
Article
PubMed
Google Scholar
Cheng Q, Wang H, Xu B, Zhu S, Hu L, Huang M. Discovery of a novel small secreted protein family with conserved N-terminal IGY motif in Dikarya fungi. BMC Genomics. 2014;15:1151.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, et al. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp. 2013;77:50521.
Google Scholar
Cournoyer P, Dinesh-Kumar SP. Studying NB-LRR immune receptor localization by agroinfiltration transient expression. Methods Mol Biol. 2011;712:1–8.
Article
CAS
PubMed
Google Scholar
Cevik V, Kazan K. Agroinfiltration of Nicotiana benthamiana leaves for co-localization of regulatory proteins involved in jasmonate signaling. Methods Mol Biol. 2013;1011:199–208.
Article
CAS
PubMed
Google Scholar
Liu L, Zhang Y, Tang S, Zhao Q, Zhang Z, Zhang H, et al. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J. 2010;61(5):893–903.
Article
CAS
PubMed
Google Scholar
Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J. 2008;56(1):169–79.
Article
CAS
PubMed
Google Scholar
Takata N, Eriksson ME. A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides). Plant Methods. 2012;8(1):30.
Article
PubMed
PubMed Central
Google Scholar
Ryu CM, Anand A, Kang L, Mysore KS. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J. 2004;40(2):322–31.
Article
CAS
PubMed
Google Scholar
Sparkes IA, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc. 2006;1(4):2019–25.
Article
CAS
PubMed
Google Scholar
Xu K, Huang X, Wu M, Wang Y, Chang Y, Liu K, et al. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS One. 2014;9(1):e83556.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhaskar PB, Venkateshwaran M, Wu L, Ane JM, Jiang J. Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS One. 2009;4(6):e5812.
Article
PubMed
PubMed Central
CAS
Google Scholar
Figueiredo JF, Romer P, Lahaye T, Graham JH, White FF, Jones JB. Agrobacterium-mediated transient expression in citrus leaves: a rapid tool for gene expression and functional gene assay. Plant Cell Rep. 2011;30(7):1339–45.
Article
CAS
PubMed
Google Scholar
Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, et al. Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep. 2008;27(5):845–53.
Article
CAS
PubMed
Google Scholar
Han KH, Meilan R, Ma C, Strauss SH. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Rep. 2000;19(3):315–20.
Article
CAS
PubMed
Google Scholar
Confalonieri M, Belenghi B, Balestrazzi A, Negri S, Facciotto G, Schenone G, et al. Transformation of elite white poplar (Populus alba L.) cv. ' Villafranca' and evaluation of herbicide resistance. Plant Cell Rep. 2000;19(10):978–82.
Article
CAS
PubMed
Google Scholar
Lee LY, Kononov ME, Bassuner B, Frame BR, Wang K, Gelvin SB. Novel plant transformation vectors containing the superpromoter. Plant Physiol. 2007;145(4):1294–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larson PR, Isebrands JG. The plastochron index as applied to developmental studies of cottonwood. Can J For Res. 1971;1(1):1–11.
Article
Google Scholar
Meicenheimer RD. The plastochron index: still useful after nearly six decades. Am J Bot. 2014;101(11):1821–35.
Article
PubMed
Google Scholar
Zhang H, Lv F, Han X, Xia X, Yin W. The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na+/K+ homeostasis in Populus euphratica. Plant Cell Rep. 2013;32(5):611–21.
Article
CAS
PubMed
Google Scholar
Damien B, Annegret K, Francis M, Dale S, Michel C. Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell. 2003;15(12):2911–28.
Article
CAS
Google Scholar
Ro DK, Mah N, Ellis BE, Douglas CJ. Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol. 2001;126(1):317–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou GK, Zhong R, Richardson EA, Morrison WH, Nairn CJ, Wood-Jone A, et al. The poplar glycosyltransferase GT47C is functionally conserved with Arabidopsis fragile fiber8. Plant Cell Physiol. 2006;47(9):1229.
Article
CAS
PubMed
Google Scholar
Zhong R, Peña MJ, Zhou GK, Nairn CJ, Woodjones A, Richardson EA, et al. Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell. 2005;17(12):3390–408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haseloff J, Siemering KR, Prasher DC, Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A. 1997;94(6):2122–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng L, Chen Y, Ding D, Zhou Y, Ding L, Wei J, et al. Endoplasmic reticulum-localized UBC34 interaction with lignin repressors MYB221 and MYB156 regulates the transactivity of the transcription factors in Populus tomentosa. BMC Plant Biol. 2019;19(1):97.
Article
PubMed
PubMed Central
Google Scholar
Nicolas R, Eric G, Gualberto JM, Marie-Noelle J, Elisabeth DF, Masakazu H, et al. Poplar peroxiredoxin Q. a thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiol. 2004;134(3):1027–38.
Article
CAS
Google Scholar
Cui Y, Zhang X, Yu M, Zhu Y, Xing J, Lin J. Techniques for detecting protein-protein interactions in living cells: principles, limitations, and recent progress. Sci China Life Sci. 2019;62(5):619–32.
Article
CAS
PubMed
Google Scholar
Xu X, Chen C, Fan B, Chen Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell. 2006;18(5):1310–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotur Z, Mackenzie N, Ramesh S, Tyerman SD, Kaiser BN, Glass AD. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytol. 2012;194(3):724–31.
Article
CAS
PubMed
Google Scholar
Yong Z, Kotur Z, Glass AD. Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J. 2010;63(5):739–48.
Article
CAS
PubMed
Google Scholar
Hiratsu K, Mitsuda N, Matsui K, Ohme-Takagi M. Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biophys Res Commun. 2004;321(1):172–8.
Article
CAS
PubMed
Google Scholar
Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goue N, et al. A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J. 2011;67(3):499–512.
Article
CAS
PubMed
Google Scholar
Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, et al. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005;19(16):1855–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 2011;66(4):579–90.
Article
CAS
PubMed
Google Scholar
Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell. 2007;19(1):270–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takata N, Awano T, Nakata MT, Sano Y, Sakamoto S, Mitsuda N, et al. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. Tree Physiol. 2019;39(4):514–25.
Article
CAS
PubMed
Google Scholar
McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, Carleton K, et al. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiol. 2010;51(6):1084–90.
Article
CAS
PubMed
Google Scholar
Manavella PA, Chan RL. Transient transformation of sunflower leaf discs via an Agrobacterium-mediated method: applications for gene expression and silencing studies. Nat Protoc. 2009;4(11):1699–707.
Article
CAS
PubMed
Google Scholar
Grimsley N, Hohn B, Hohn T, Walden R. "Agroinfection," an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci U S A. 1986;83(10):3282–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandquist DR, Ehleringer JR. Intraspecific variation of drought adaptation in brittlebush: leaf pubescence and timing of leaf loss vary with rainfall. Oecologia. 1998;113(2):162–9.
Article
PubMed
Google Scholar
Wang H, Wang C, Liu H, Tang R, Zhang H. An efficient agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana. Plant Cell Rep. 2011;30(11):2037–44.
Article
CAS
PubMed
Google Scholar
Yevtushenko DP, Misra S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep. 2010;29(3):211–21.
Article
CAS
PubMed
Google Scholar
Yamaguchi M, Goue N, Igarashi H, Ohtani M, Nakano Y, Mortimer JC, et al. VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol. 2010;153(3):906–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, et al. Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci U S A. 2002;99(24):15794–9.
Article
PubMed
PubMed Central
Google Scholar
Tan TT, Endo H, Sano R, Kurata T, Yamaguchi M, Ohtani M, et al. Transcription factors VND1-VND3 contribute to cotyledon xylem vessel formation. Plant Physiol. 2018;176(1):773–89.
Article
CAS
PubMed
Google Scholar
Wang Y, Chen Y, Ding L, Zhang J, Wei J, Wang H. Validation of reference genes for gene expression by quantitative real-time RT-PCR in stem segments spanning primary to secondary growth in Populus tomentosa. PLoS One. 2016;11(6):e0157370.
Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, et al. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol. 2014;164(4):2020–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell. 2006;125(7):1347–60.
Article
CAS
PubMed
Google Scholar
Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, et al. ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc Natl Acad Sci U S A. 2009;106(33):14174–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waadt R, Kudla J. In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC). CSH Protoc. 2008;2008(4):pdb. prot4995.
PubMed
Google Scholar
Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, et al. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 2008;146(2):368–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue Y, Xing J, Wan Y, Lv X, Fan L, Zhang Y, et al. Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains. Mol Plant. 2018;11(6):846–59.
Article
CAS
PubMed
Google Scholar
Smith RA, Schuetz M, Roach M, Mansfield SD, Ellis B, Samuels L. Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell. 2013;25(10):3988–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amsbury S, Hunt L, Elhaddad N, Baillie A, Lundgren M, Verhertbruggen Y, et al. Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr Biol. 2016;26(21):2899–906.
Article
CAS
PubMed
PubMed Central
Google Scholar