Iven T, Herrfurth C, Hornung E, Heilmann M, Hofvander P, Stymne S, et al. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry. Plant Methods. 2013;9:24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miwa TK. Jojoba oil wax esters and derived fatty acids and alcohols: Gas chromatographic analyses. J Am Oil Chem Soc. 1971;48:259–64.
Article
CAS
Google Scholar
Benzioni A, Van Boven M, Ramamoorthy S, Mills D. Dynamics of fruit growth, accumulation of wax esters, simmondsins, proteins and carbohydrates in jojoba. Ind Crops Prod. 2007;26:337–44.
Article
CAS
Google Scholar
Moreau RA, Huang AHC. Gluconeogenesis from Storage Wax in the Cotyledons of Jojoba Seedlings. Plant Physiol. 1977;60:329–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang AHC. Plant Lipid Droplets and Their Associated Proteins: Potential for Rapid Advances. Plant Physiol. 2018;176:1894–918.
Article
PubMed
CAS
Google Scholar
Moreau RA, Huang AHC. Enzymes of wax ester catabolism in jojoba. Ien: Methods in Enzymology. Elsevier; 1981. p. 804–13.
Rost TL, Paterson KE. Structural and histochemical characterization of the cotyledon storage organelles of jojoba (Simmondsia chinensis). Protoplasma. 1978;95:1–10.
Article
Google Scholar
Sturtevant D, Lu S, Zhou Z-W, Shen Y, Wang S, Song J-M, et al. The genome of jojoba (Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds. Sci Adv. 2020;6:eaay3240.
Al-Obaidi JR, Halabi MF, AlKhalifah NS, Asanar S, Al-Soqeer AA, Attia MF. A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant. Biol Res. 2017;50.
Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol. 2006;72:1373–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wenning L, Ejsing CS, David F, Sprenger RR, Nielsen J, Siewers V. Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis. Microb Cell Fact. 2019;18.
Wenning L, Yu T, David F, Nielsen J, Siewers V. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae: Turning S. cerevisiae Into a Jojoba Plant. Biotechnol Bioeng. 2017;114:1025–35.
Article
CAS
PubMed
Google Scholar
Iven T, Hornung E, Heilmann M, Feussner I. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil. Plant Biotechnol J. 2016;14:252–9.
Article
CAS
PubMed
Google Scholar
Ruiz-Lopez N, Broughton R, Usher S, Salas JJ, Haslam RP, Napier JA, et al. Tailoring the composition of novel wax esters in the seeds of transgenic Camelina sativa through systematic metabolic engineering. Plant Biotechnol J. 2017;15:837–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu D, Hornung E, Iven T, Feussner I. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes. Biotechnol Biofuels. 2018;11:53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu L-H, Krens F, Smith MA, Li X, Qi W, van Loo EN, et al. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production. Sci Rep. 2016;6:22181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Guan R, Fan J, Zhu L-H. Development of Industrial Oil Crop Crambe abyssinica for Wax Ester Production through Metabolic Engineering and Cross Breeding. Plant Cell Physiol. 2019;60:1274–83.
Article
CAS
PubMed
Google Scholar
Qi W, Lu H, Zhang Y, Cheng J, Huang B, Lu X, et al. Oil crop genetic modification for producing added value lipids. Critl Rev Biotechnol. 2020;40:777–86.
Article
CAS
Google Scholar
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. BBA-MOL CELL BIOL L. 1861;2016:1253–68.
Google Scholar
Quettier A-L, Eastmond PJ. Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem. 2009;47:485–90.
Article
CAS
PubMed
Google Scholar
Theodoulou FL, Eastmond PJ. Seed storage oil catabolism: a story of give and take. Curr Opin Plant Biol. 2012;15:322–8.
Article
CAS
PubMed
Google Scholar
Seth S, Chakravorty D, Dubey VK, Patra S. An insight into plant lipase research – challenges encountered. Protein Expr Purif. 2014;95:13–21.
Article
CAS
PubMed
Google Scholar
Villeneuve P. Plant lipases and their applications in oils and fats modification. Eur J Lipid Sci Technol. 2003;105:308–17.
Article
CAS
Google Scholar
Rajangam AS, Gidda SK, Craddock C, Mullen RT, Dyer JM, Eastmond PJ. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds. Plant Physiol. 2013;161:72–80.
Article
CAS
PubMed
Google Scholar
Huang AHC, Moreau RA, Liu KDF. Development and Properties of a Wax Ester Hydrolase in the Cotyledons of Jojoba Seedlings. Plant Physiol. 1978;61:339–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rost TL, Simper AD, Schell P, Allen S. Anatomy of Jojoba (Simmondsia chinensis) seed and the utilization of liquid wax during germination. Econ Bot. 1977;31:140–7.
Article
Google Scholar
Müntz K. Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledonous seeds. J Exp Bot. 1996;47:605–22.
Article
Google Scholar
Tan-Wilson AL, Wilson KA. Mobilization of seed protein reserves. Physiol Plant. 2012;145:140–53.
Article
CAS
PubMed
Google Scholar
Murphy DJ, Cummins I, Kang AS. Immunocytochemical and biochemical studies of the mobilisation of storage oil-bodies and proteins in germinating cotyledons of oilseed rape, Brassica napus. J Sci Food Agric. 1989;48:209–23.
Article
CAS
Google Scholar
Sadeghipour HR, Bhatla SC. Differential Sensitivity of Oleosins to Proteolysis During Oil Body Mobilization in Sunflower Seedlings. Plant Cell Physiol. 2002;43:1117–26.
Article
CAS
PubMed
Google Scholar
Tzen JTC, Peng C-C, Cheng D-J, Chen ECF, Chiu JMH. A New Method for Seed Oil Body Purification and Examination of Oil Body Integrity Following Germination. J Biochem. 1997;121:762–8.
Article
CAS
PubMed
Google Scholar
Vandana S, Bhatla SC. Evidence for the probable oil body association of a thiol-protease, leading to oleosin degradation in sunflower seedling cotyledons. Plant Physiol Biochem. 2006;44:714–23.
Article
CAS
PubMed
Google Scholar
Deruyffelaere C, Bouchez I, Morin H, Guillot A, Miquel M, Froissard M, et al. Ubiquitin-Mediated Proteasomal Degradation of Oleosins is Involved in Oil Body Mobilization During Post-Germinative Seedling Growth in Arabidopsis. Plant Cell Physiol. 2015;56:1374–87.
Article
CAS
PubMed
Google Scholar
Tzen JTC, Lai Y-K, Chan K-L, Huang AHC. Oleosin Isoforms of High and Low Molecular Weights Are Present in the Oil Bodies of Diverse Seed Species. Plant Physiol. 1990;94:1282–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Boven M, Holser RA, Cokelaere M, Decuypere E, Govaerts C, Lemey J. Characterization of triglycerides isolated from jojoba oil. J Am Oil Chem Soc. 2000;77:1325–9.
Article
Google Scholar
Barros M, Fleuri LF, Macedo GA. Seed lipases: sources, applications and properties - a review. Braz J Chem Eng. 2010;27:15–29.
Article
CAS
Google Scholar
Abigor RD, Uadia PO, Foglia TA, Haas MJ, Scott K, Savary BJ. Partial purification and properties of lipase from germinating seeds of Jatropha curcas L. J Am Oil Chem Soc. 2002;79:1123–6.
Article
CAS
Google Scholar
Sana NK, Hossin I, Haque EM, Shaha RK. Identification, Purification and Characterization of Lipase from Germinating Oil Seeds (Brassica napus L.). Pak J Biol Sci. 2004;7:246–52.
Article
Google Scholar
Yeşiloğlu Y, Başkurt L. Partial Purification and Characterization of Almond Seed Lipase. Prep Biochem Biotech. 2008;38:397–410.
Article
CAS
Google Scholar
Sagiroglu A, Arabaci N. Sunflower Seed Lipase: Extraction, Purification, and Characterization. Prep Biochem Biotech. 2005;35:37–51.
Article
CAS
Google Scholar
Tsujita T, Sumiyoshi M, Okuda H. Wax ester-synthesizing activity of lipases. Lipids. 1999;34:1159–66.
Article
CAS
PubMed
Google Scholar
Kalinowska M, Wojciechowski ZA. Characterization of wax-ester hydrolase from roots of white mustard (Sinapis alba L.) seedlings. Acta Biochim Pol. 1985;32:259–69.
CAS
PubMed
Google Scholar
Deng L, Wang X, Nie K, Wang F, Liu J, Wang P, et al. Synthesis of Wax Esters by Lipase-catalyzed Esterification with Immobilized Lipase from Candida sp. 99–125. Chin J Chem Eng. 2011;19:978–82.
Kuo C-H, Chen H-H, Chen J-H, Liu Y-C, Shieh C-J. High Yield of Wax Ester Synthesized from Cetyl Alcohol and Octanoic Acid by Lipozyme RMIM and Novozym 435. Int J Mol Sci. 2012;13:11694–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinke G, Weitkamp P, Klein E, Mukherjee KD. High-Yield Preparation of Wax Esters via Lipase-Catalyzed Esterification Using Fatty Acids and Alcohols from Crambe and Camelina Oils. J Agric Food Chem. 2001;49:647–51.
Article
CAS
PubMed
Google Scholar
Eastmond PJ. SUGAR-DEPENDENT1 Encodes a Patatin Domain Triacylglycerol Lipase That Initiates Storage Oil Breakdown in Germinating Arabidopsis Seeds. Plant Cell. 2006;18:665–75.
Sánchez M, Nicholls DG, Brindley DN. The relationship between palmitoyl-coenzyme A synthetase activity and esterification of sn-glycerol 3-phosphate in rat liver mitochondria. Biochem J. 1973;132:697–706.
Article
PubMed
PubMed Central
Google Scholar
Miklaszewska M, Dittrich-Domergue F, Banaś A, Domergue F. Wax synthase MhWS2 from Marinobacter hydrocarbonoclasticus: substrate specificity and biotechnological potential for wax ester production. Appl Microbiol Biotechnol. 2018;102:4063–74.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.
Article
CAS
PubMed
Google Scholar
Heneen WK, Karlsson G, Brismar K, Gummeson P-O, Marttila S, Leonova S, et al. Fusion of oil bodies in endosperm of oat grains. Planta. 2008;228:589–99.
Article
CAS
PubMed
Google Scholar
McCleary BV, Gibson TS, Mugford DC, Collaborators:, Lukow O, Jackson DS, et al. Measurement of Total Starch in Cereal Products by Amyloglucosidase-α-Amylase Method: Collaborative Study. J AOAC Int 1997;80:571–579.
Stymne S, Stobart AK. Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver. Biochem J. 1984;223:305–14.
Article
CAS
PubMed
PubMed Central
Google Scholar