Rees RW, Flood J, Hasan Y, Potter U, Cooper RM. Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathol. 2009;58(5):982–9. https://doi.org/10.1111/j.1365-3059.2009.02100.x.
Article
Google Scholar
Mohammed CL, Rimbawanto A, Page DE. Management of basidiomycete root-and stem-rot diseases in oil palm, rubber and tropical hardwood plantation crops. Forest Pathol. 2014;44(6):428–46. https://doi.org/10.1111/efp.12140.
Article
Google Scholar
Chong KP, Dayou J, Alexander A. Pathogenic nature of Ganoderma boninense and basal stem rot disease. In: Detection and control of Ganoderma boninense in oil palm crop. Cham: Springer; 2017. p. 5–12.
Chapter
Google Scholar
Ho CL, Tan YC. Molecular defense response of oil palm to Ganoderma infection. Phytochemistry. 2014;114:168–77. https://doi.org/10.1016/j.phytochem.2014.10.016.
Article
CAS
PubMed
Google Scholar
Bahari MNA, Sakeh NM, Abdullah SNA, Ramli RR, Kadkhodaei S. Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC Plant Biol. 2018;18(1):377. https://doi.org/10.1186/s12870-018-1594-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dodds PN, Rafiqi M, Gan PH, Hardham AR, Jones DA, Ellis JG. Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytol. 2009;183(4):993–1000.
Article
PubMed
Google Scholar
Catanzariti AM, Dodds PN, Ellis JG. Avirulence proteins from haustoria-forming pathogens. FEMS Microbiol Lett. 2007;269(2):181–8.
Article
CAS
PubMed
Google Scholar
Zhao Z, Liu H, Wang C, Xu JR. Erratum to: comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2014;4(1):274. https://doi.org/10.1186/1471-2164-15-6.
Article
Google Scholar
Nusaibah SA, Abdullah SNA, Idris AS, Sariah M, Pauzi ZM. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease. Plant Physiol Biochem. 2016;109:156–65. https://doi.org/10.1016/j.plaphy.2016.09.014.
Article
CAS
PubMed
Google Scholar
Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol. 2009;60:379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346.
Article
CAS
PubMed
Google Scholar
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet. 2010;11(8):539. https://doi.org/10.1038/nrg2812.
Article
CAS
PubMed
Google Scholar
Cook DE, Mesarich CH, Thomma BP. Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol. 2015;53:541–63. https://doi.org/10.1146/annurev-phyto-080614-120114.
Article
CAS
PubMed
Google Scholar
Pel MJ, Pieterse CM. Microbial recognition and evasion of host immunity. J Exp Bot. 2012;64(5):1237–48. https://doi.org/10.1093/jxb/ers262.
Article
CAS
PubMed
Google Scholar
Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014;35(7):345–51. https://doi.org/10.1016/j.it.2014.05.004.
Article
CAS
PubMed
Google Scholar
Miller RNG, Costa Alves GS, Van Sluys MA. Plant immunity: unravelling the complexity of plant responses to biotic stresses. Ann Bot. 2017;119(5):681–7. https://doi.org/10.1093/aob/mcw284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi M, Valent B. Communication between filamentous pathogens and plants at the biotrophic interface. Annu Rev Phytopathol. 2013;51:587–611. https://doi.org/10.1146/annurev-phyto-081211-172916.
Article
CAS
PubMed
Google Scholar
Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant J. 2017;92(5):761–73. https://doi.org/10.1111/tpj.13718.
Article
CAS
PubMed
Google Scholar
Vargas WA, Martín JMS, Rech GE, Rivera LP, Benito EP, Díaz-Mínguez JM, Thon MR, Sukno SA. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiol. 2012;158(3):1342–58. https://doi.org/10.1104/pp.111.190397.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kabbage M, Yarden O, Dickman MB. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant Sci. 2015;233:53–60. https://doi.org/10.1016/j.plantsci.2014.12.018.
Article
CAS
PubMed
Google Scholar
Abdullah SNA, Akhtar MS. Plant and necrotrophic fungal pathogen interaction: mechanism and mode of action. In: Plant, soil and microbes. Cham: Springer; 2016. p. 29–53.
Chapter
Google Scholar
Azizi P, Rafii MY, Abdullah SNA, Nejat N, Maziah M, Hanafi MM, Latif MA, Sahebi M. Toward understanding of rice innate immunity against Magnaporthe oryzae. Crit Rev Biotechnol. 2016;36:165–74.
Article
CAS
PubMed
Google Scholar
Häffner E, Konietzki S, Diederichsen E. Keeping control: the role of senescence and development in plant pathogenesis and defense. Plants. 2015;4(3):449–88. https://doi.org/10.3390/plants4030449.
Article
PubMed
PubMed Central
Google Scholar
Giri MK, Singh N, Banday ZZ, Singh V, Ram H, Singh D, Chattopadhyay S, Nandi AK. GBF 1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. Plant J. 2017;91(5):802–15. https://doi.org/10.1111/tpj.13608.
Article
CAS
PubMed
Google Scholar
Liu B, Ouyang Z, Zhang Y, Li X, Hong Y, Huang L, Liu S, Zhang H, Li D, Song F. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. PLoS One. 2014;9(7):e102067. https://doi.org/10.1371/journal.pone.0102067.
Article
PubMed
PubMed Central
Google Scholar
Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J. Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 2013;161(4):1783–94. https://doi.org/10.1104/pp.112.210773.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng DW, Abeysinghe JK, Kamali M. Regulating the regulators: the control of transcription factors in plant defense signaling. Int J Mol Sci. 2018;19(12):3737. https://doi.org/10.3390/ijms19123737.
Article
CAS
PubMed Central
Google Scholar
Pandey D, Rajendran SRCK, Gaur M, Sajeesh PK, Kumar A. Plant defense signaling and responses against necrotrophic fungal pathogens. J Plant Growth Regul. 2016;35(4):1159–74. https://doi.org/10.1007/s00344-016-9600-7.
Article
CAS
Google Scholar
Foyer CH, Rasool B, Davey JW, Hancock RD. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J Exp Bot. 2016;67(7):2025–37. https://doi.org/10.1093/jxb/erw079.
Article
CAS
PubMed
Google Scholar
Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci. 2016;7:114. https://doi.org/10.3389/fpls.2016.00114.
Article
PubMed
PubMed Central
Google Scholar
Fragkostefanakis S, Simm S, El-Shershaby A, Hu Y, Bublak D, Mesihovic A, Darm K, Mishra SK, Tschiersch B, Theres K, Scharf C, Schleiff E, Scharf KD. The repressor and co-activator HsfB1 regulates the major heat stress transcription factors in tomato. Plant Cell Environ. 2019;42(3):874–90. https://doi.org/10.1111/pce.13434.
Article
CAS
PubMed
Google Scholar
Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PAC, Richard F, Persad R, Bowden L, Hickman R, Martin C, Beynon JL, Buchanan-Wollaston V, Baker NR, Morison JIL, Schöffl F, Ott S, Mullineaux PM. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. J Exp Bot. 2013;64(11):3467–81. https://doi.org/10.1093/jxb/ert185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramli Z, Abdullah SNA. Functional characterisation of the oil palm type 3 metallothionein-like gene (MT3-B) promoter. Plant Mol Biol Rep. 2010;28(3):531–41. https://doi.org/10.1007/s11105-009-0177-1.
Article
CAS
Google Scholar
Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014;217–218:109–19. https://doi.org/10.1016/j.plantsci.2013.12.007.
Article
CAS
PubMed
Google Scholar
Sanchez I, Hernandez-Guerrero R, Mendez-Monroy PE, Martinez-Nuñez MA, Ibarra JA, Pérez-Rueda E. Evaluation of the abundance of DNA-binding transcription factors in prokaryotes. Genes. 2020;11(1):52. https://doi.org/10.3390/genes11010052.
Article
CAS
PubMed Central
Google Scholar
Huang D, Wang S, Zhang B, Shang-Guan K, Shi Y, Zhang D, Liu X, Wu K, Xu Z, Fu X, Zhou YA. Gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell. 2015;27(6):1681–96. https://doi.org/10.1105/tpc.15.00015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signal Behav. 2014;9(1):e27522. https://doi.org/10.4161/psb.27522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nemesio-Gorriz M, Blair PB, Dalman K, Hammerbacher A, Arnerup J, Stenlid J, Mukhtar SM, Elfstrand M. Identification of Norway spruce MYB-bHLH-WDR transcription factor complex members linked to regulation of the flavonoid pathway. Front Plant Sci. 2017;8:305. https://doi.org/10.3389/fpls.2017.00305.
Article
PubMed
PubMed Central
Google Scholar
Sun X, Malhis N, Zhao B, Xue B, Gsponer J, Rikkerink EH. Computational disorder analysis in ethylene response factors uncovers binding motifs critical to their diverse functions. Int J Mol Sci. 2020;21(1):74. https://doi.org/10.3390/ijms21010074.
Article
CAS
Google Scholar
Phukan UJ, Jeena GS, Tripathi V, Shukla RK. Regulation of Apetala2/ethylene response factors in plants. Front Plant Sci. 2017;8:150. https://doi.org/10.3389/fpls.2017.00150.
Article
PubMed
PubMed Central
Google Scholar
Purohit A, Ganguly S, Chaudhuri RK, Chakraborti D. Understanding the Interaction of Molecular Factors During the Crosstalk Between Drought and Biotic Stresses in Plant. In: Molecular Plant Abiotic Stress: Biology and Biotechnology. Hoboken: Wiley; 2019. p. 427–46.
Tee SS, Tan YC, Abdullah F, Ong-Abdullah M, Ho CL. Transcriptome of oil palm (Elaeis guineensis Jacq.) roots treated with Ganoderma boninense. Tree Genet Genomes. 2013;9(2):377–86. https://doi.org/10.1007/s11295-012-0559-7.
Article
Google Scholar
Ho CL, Tan YC, Yeoh KA, Ghazali AK, Yee WY, Hoh CC. De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genomics. 2016;17(1):66. https://doi.org/10.1186/s12864-016-2368-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan P, Du L, Poovaiah B. Ca2+/Calmodulin-dependent AtSR1/CAMTA3 plays critical roles in balancing plant growth and immunity. Int J Mol Sci. 2018;19(6):1764. https://doi.org/10.3390/ijms19061764.
Article
CAS
PubMed Central
Google Scholar
Wang Y, Wei F, Zhou H, Liu N, Niu X, Yan C, Zhang L, Han S, Hou C, Wang D. TaCAMTA4, a Calmodulin-interacting protein, involved in defense response of wheat to Puccinia triticina. Sci Rep. 2019;9(1):641. https://doi.org/10.1038/s41598-018-36385-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Viola IL, Camoirano A, Gonzalez DH. Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis. Plant Physiol. 2016;170(1):74–85. https://doi.org/10.1104/pp.15.01016.
Article
CAS
PubMed
Google Scholar
Li M, Chen H, Chen J, Chang M, Palmer IA, Gassmann W, Liu F, Fu Z. TCP transcription factors interact with NPR1 and contribute redundantly to systemic acquired resistance. Front Plant Sci. 2018;9:1153. https://doi.org/10.3389/fpls.2018.01153.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Ji Y, Xue C, Ma H, Xi Y, Huang P, Wang H, An F, Li B, Wang Y, Guo H. Integrated regulation of apical hook development by transcriptional coupling of EIN3/EIL1 and PIFs in Arabidopsis. Plant Cell. 2018;30(9):1971–88. https://doi.org/10.1105/tpc.18.00018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez-Prado JS, Latrasse D, Rodriguez-Granados NY, Huang Y, Manza-Mianza D, Brik-Chaouche R, Jaouannet M, Citerne S, Bendahmane A, Hirt H, Raynaud C. The Polycomb protein LHP1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity. Plant J. 2019;100(6):1118–31. https://doi.org/10.1111/tpj.14502.
Article
CAS
PubMed
Google Scholar
Zhong R, Lee C, Ye ZH. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant. 2010;3(6):1087–103. https://doi.org/10.1093/mp/ssq062.
Article
CAS
PubMed
Google Scholar
Laluk K, Mengiste T. Necrotroph attacks on plants: wanton destruction or covert extortion? Arabidopsis Book. 2010;8:e0136. https://doi.org/10.1199/tab.0136.
Article
PubMed
PubMed Central
Google Scholar
Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T, Fernie AR. JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell. 2012;24(2):482–506. https://doi.org/10.1105/tpc.111.090894.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 2017;22(1):53–65. https://doi.org/10.1016/j.tplants.2016.08.015.
Article
CAS
PubMed
Google Scholar
Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Shibata D, Ohta D. Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol Plant-Microbe Interact. 2012;25(5):684–96. https://doi.org/10.1094/MPMI-09-11-0244.
Article
CAS
PubMed
Google Scholar
Toth Z, Winterhagen P, Kalapos B, Su Y, Kovacs L, Kiss E. Expression of a grapevine NAC transcription factor gene is induced in response to powdery mildew colonization in salicylic acid-independent manner. Sci Rep. 2016;6:30825. https://doi.org/10.1038/srep30825.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindermayr C, Sell S, Müller B, Leister D, Durner J. Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell. 2010;22(8):2894–907. https://doi.org/10.1105/tpc.109.066464.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ. Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Mol Plant. 2018;11(12):1427–39. https://doi.org/10.1016/j.molp.2018.10.002.
Article
CAS
PubMed
Google Scholar
McCarthy RL, Zhong R, Ye Z. Secondary wall NAC binding element (SNBE), a key cis-acting element required for target gene activation by secondary wall NAC master switches. Plant Signal Behav. 2011;6(9):1282–5. https://doi.org/10.4161/psb.6.9.16402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kallamadi PR, Dandu K, Kirti PB, Rao CM, Thakur SS, Mulpuri S. An insight into powdery mildew–infected, susceptible, resistant, and immune sunflower genotypes. Proteomics. 2018;18(16):1700418. https://doi.org/10.1002/pmic.201700418.
Article
CAS
Google Scholar
Neu E, Domes HS, Menz I, Kaufmann H, Linde M, Debener T. Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in defense transcriptome activation. Plant Mol Biol. 2019;99(4–5):299–316. https://doi.org/10.1007/s11103-018-00818-2.
Article
CAS
PubMed
Google Scholar
Wei Y, Liu G, Chang Y, He C, Shi H. Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signaling in cassava. Mol Plant Pathol. 2018;19(10):2209–20. https://doi.org/10.1111/mpp.12691.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woodger FJ, Millar A, Murray F, Jacobsen JV, Gubler F. The role of GAMYB transcription factors in GA-regulated gene expression. J Plant Growth Regul. 2003;22(2):176–84. https://doi.org/10.1007/s00344-003-0025-8.
Article
CAS
Google Scholar
Wei K, Zhao Y, Zhou H, Jiang C, Zhang B, Zhou Y, Song X, Lu M. PagMYB216 is involved in the regulation of cellulose synthesis in Populus. Mol Breed. 2019;39(5):65. https://doi.org/10.1007/s11032-019-0970-y.
Article
CAS
Google Scholar
Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 2003;133(1):73–83. https://doi.org/10.1104/pp.103.022442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell. 2003;15(9):2181–91. https://doi.org/10.1105/tpc.012849.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1. 2 transcription. Plant J. 2007;50(1):128–39. https://doi.org/10.1111/j.1365-313X.2007.03039.x.
Article
CAS
PubMed
Google Scholar
Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 2012;22:1613–6. https://doi.org/10.1038/cr.2012.145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo SD, Cho Y, Sheen J. Emerging connections in the ethylene signaling network. Trends Plant Sci. 2009;14:270–9. https://doi.org/10.1016/j.tplants.2009.02.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nieuwenhuizen NJ, Chen X, Wang MY, Matich AJ, Perez RL, Allan AC, Green SA, Atkinson RG. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiol. 2015;167(4):1243–58. https://doi.org/10.1104/pp.114.254367.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim JM, To TK, Li W, Zhang X. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci. 2011;108(30):12539–44. https://doi.org/10.1073/pnas.1103959108.
Article
PubMed
PubMed Central
Google Scholar
Krishnaswamy S, Verma S, Rahman MH, Kav NN. Functional characterization of four APETALA2-family genes (RAP2. 6, RAP2. 6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol. 2011;75:107–27. https://doi.org/10.1007/s11103-010-9711-7.
Article
CAS
PubMed
Google Scholar
Wang Z, Cao G, Wang X, Miao J, Liu X, Chen Z, Qu LJ, Gu H. Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Rep. 2008;27(1):125–35. https://doi.org/10.1007/s00299-007-0410-z.
Article
CAS
PubMed
Google Scholar
Ali MA, Abbas A, Kreil DP, Bohlmann H. Overexpression of the transcription factor RAP2. 6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots. BMC Plant Biol. 2013;13(1):47. https://doi.org/10.1186/1471-2229-13-47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T, Koshiba T, Yokota T, Kamada H, Satoh S. Spatially selective hormonal control of RAP2. 6L and ANAC071 transcription factors involved in tissue Reunion in Arabidopsis. Proc Natl Acad Sci. 2011;108(38):16128–32. https://doi.org/10.1073/pnas.1110443108.
Article
PubMed
PubMed Central
Google Scholar
Matsuoka K, Yanagi R, Yumoto E, Yokota T, Yamane H, Satoh S, Asahina M. RAP2. 6L and jasmonic acid–responsive genes are expressed upon Arabidopsis hypocotyl grafting but are not needed for cell proliferation related to healing. Plant Mol Biol. 2018;96(6):531–42. https://doi.org/10.1007/s11103-018-0702-4.
Article
CAS
PubMed
Google Scholar
Wang H, Lin J, Chang Y, Jiang CZ. Comparative transcriptomic analysis reveals that ethylene/H2O2-mediated hypersensitive response and programmed cell death determine the compatible interaction of sand pear and Alternaria alternata. Front Plant Sci. 2017;8:195. https://doi.org/10.3389/fpls.2017.00195.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D, Xu P, Zhang S. A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean. Front Plant Sci. 2017;8:299. https://doi.org/10.3389/fpls.2017.00299.
Article
PubMed
PubMed Central
Google Scholar
Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci. 2014;111(6):2367–72. https://doi.org/10.1073/pnas.1316278111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek K. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2–type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell. 2001;13(5):1035–46. https://doi.org/10.1105/tpc.13.5.1035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim W. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol. 2004;55(1):61–81. https://doi.org/10.1007/s11103-004-0417-6.
Article
CAS
PubMed
Google Scholar
Lee JH, Kim DM, Lee JH, Kim J, Bang JW, Kim WT, Pai HS. Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta. 2005;222(2):211–24. https://doi.org/10.1007/s00425-005-1525-5.
Article
CAS
PubMed
Google Scholar
Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot. 2009;60(13):3781–96. https://doi.org/10.1093/jxb/erp214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maruyama Y, Yamoto N, Suzuki Y, Chiba Y, Yamazaki KI, Sato T, Yamaguchi J. The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Sci. 2013;213:79–87. https://doi.org/10.1016/j.plantsci.2013.08.008.
Article
CAS
PubMed
Google Scholar
Kaur A, Pati PK, Pati AM, Nagpal AK. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One. 2017;12(9):e0184523. https://doi.org/10.1371/journal.pone.0184523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aldon D, Mbengue M, Mazars C, Galaud JP. Calcium signaling in plant biotic interactions. Int J Mol Sci. 2018;19(3):665. https://doi.org/10.3390/ijms19030665.
Article
CAS
PubMed Central
Google Scholar
Chowdhury S, Basu A, Kundu S. Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci Rep. 2017;7(1):17251. https://doi.org/10.1038/s41598-017-17248-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frerigmann H, Glawischnig E, Gigolashvili T. The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana. Front Plant Sci. 2015;6:654. https://doi.org/10.3389/fpls.2015.00654.
Article
PubMed
PubMed Central
Google Scholar
Miao H, Cai C, Wei J, Huang J, Chang J, Qian H, Zhang X, Zhao Y, Sun B, Wang B, Wang Q. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation. Sci Rep. 2016;6:31854. https://doi.org/10.1038/srep31854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kos M, Houshyani B, Achhami BB, Wietsma R, Gols R, Weldegergis BT, Kabouw P, Bouwmeester HJ, Vet LE, Dicke M, van Loon JJ. Herbivore-mediated effects of glucosinolates on different natural enemies of a specialist aphid. J Chem Ecol. 2012;38(1):100–15. https://doi.org/10.1007/s10886-012-0065-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buxdorf K, Yaffe H, Barda O, Levy M. The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS One. 2013;8(8):e70771. https://doi.org/10.1371/journal.pone.0070771.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheval C, Aldon D, Galaud JP, Ranty B. Calcium/calmodulin-mediated regulation of plant immunity. BBA Mol Cell Res. 2013;1833(7):1766–71. https://doi.org/10.1016/j.bbamcr.2013.01.031.
Article
CAS
Google Scholar
Gao X. Cox JrK, He P. functions of calcium-dependent protein kinases in plant innate immunity. Plants. 2014;3(1):160–76. https://doi.org/10.3390/plants3010160.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang T, Poovaiah BW. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J Biol Chem. 2000;275(49):38467–73. https://doi.org/10.1074/jbc.M003566200.
Article
CAS
PubMed
Google Scholar
Kakar KU, Nawaz Z, Cui Z, Cao P, Jin J, Shu Q, Ren X. Evolutionary and expression analysis of CAMTA gene family in Nicotiana tabacum yielded insights into their origin, expansion and stress responses. Sci Rep. 2018;8(1):10322. https://doi.org/10.1038/s41598-018-28148-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yue R, Lu C, Sun T, Peng T, Han X, Qi J, Yan S, Tie S. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. Front. Plant Sci. 2015;6:576. https://doi.org/10.3389/fpls.2015.00576.
Article
Google Scholar
Kollist H, Zandalinas SI, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R. Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci. 2019;24(1):25–37. https://doi.org/10.1016/j.tplants.2018.10.003.
Article
CAS
PubMed
Google Scholar
Zhang L, Du L, Shen C, Yang Y, Poovaiah BW. Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+–calmodulin–AtSR 1/CAMTA 3 signaling. Plant J. 2014;78(2):269–81. https://doi.org/10.1111/tpj.12473.
Article
CAS
PubMed
Google Scholar
Cheng HQ, Han LB, Yang CL, Wu XM, Zhong NQ, Wu JH, Wang FX, Wang HY. Xia, G. X. the cotton MYB108 forms a positive feedback regulation loop with CML11 and participates in the defense response against Verticillium dahliae infection. J Exp Bot. 2016;67(6):1935–50. https://doi.org/10.1093/jxb/erw016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kendziorski C, Irizarry RA, Chen KS, Haag JD, Gould MN. On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci. 2005;102(12):4252–7. https://doi.org/10.1073/pnas.0500607102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajkumar AP, Qvist P, Lazarus R, Lescai F, Ju J, Nyegaard M, Mors O, Borglum AD, Li Q, Christensen JH. Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genomics. 2015;16:548. https://doi.org/10.1186/s12864-015-1767-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. https://doi.org/10.1038/nrg2484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Y, Wan H, Cheng T, Wang J, Yang W, Pan H, Zhang Q. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis. Sci Rep. 2017;7:43382. https://doi.org/10.1038/srep43382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Höfgen R, Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988;16(20):9877. https://doi.org/10.1093/nar/16.20.9877.
Article
PubMed
PubMed Central
Google Scholar
Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM. Oil palm drought inducible DREB1 induced expression of DRE/CRT-and non-DRE/CRT-containing genes in lowland transgenic tomato under cold and PEG treatments. Plant Physiol Biochem. 2017;112:129–51. https://doi.org/10.1016/j.plaphy.2016.12.025.
Article
CAS
PubMed
Google Scholar