Zhang GB, Meng S, Gong JM. The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation. Int J Mol Sci. 2018;19:3535.
Article
PubMed Central
CAS
Google Scholar
Bloom AJ. The increasing importance of distinguishing among plant nitrogen sources. Curr Opin Plant Biol. 2015;25:10–6.
Article
CAS
PubMed
Google Scholar
Peeters KMU, Vanlaere AJ. Amino-acid metabolism associated with N-mobilization from the flag leaf of wheat (Triticum aestivum L.) during grain development. Plant Cell Environ. 1994;17:131–41.
Article
CAS
Google Scholar
Lu K, Wu B, Wang J, Zhu W, Nie H, Qian J, Huang W, Fang Z. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J. 2018;16:1710–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Besnard J, Zhao C, Avice JC, Vitha S, Hyodo A, Pilot G, Okumoto S. Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loading. J Exp Bot. 2018;69:5221–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garneau MG, Tan Q, Tegeder M. Function of pea amino acid permease AAP6 in nodule nitrogen metabolism and export, and plant nutrition. J Exp Bot. 2018;69:5205–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martho KF, de Melo AT, Takahashi JP, Guerra JM, Santos DC, Purisco SU, Melhem MS, Fazioli RD, Phanord C, Sartorelli P, Vallim MA, Pascon RC. Amino acid permeases and virulence in Cryptococcus neoformans. PLoS One. 2016;11:e0163919.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fischer WN, Loo DD, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB. Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J. 2002;29:717–31.
Article
CAS
PubMed
Google Scholar
Tegeder M, Rentsch D. 2010. Uptake and partitioning of amino acids and peptides. Mol Plant. 2010;3:997–1011.
Article
CAS
PubMed
Google Scholar
Tegeder M, Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018;217:35–53.
Article
PubMed
Google Scholar
Okumoto S, Koch W, Tegeder M, Fischer WN, Biehl A, Leister D, Stierhof YD, Frommer WB. Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot. 2004;55:2155–68.
Article
CAS
PubMed
Google Scholar
Tegeder M, Hammes UZ. The way out and in: phloem loading and unloading of amino acids. Curr Opin Plant Biol. 2018;43:16–21.
Article
CAS
PubMed
Google Scholar
Karmann J, Müller B, Hammes UZ. The long and winding road: transport pathways for amino acids in Arabidopsis seeds. Plant Reprod. 2018;31:253–61.
Article
CAS
PubMed
Google Scholar
Wang J, Wu BW, Lu K, Wei Q, Qian JJ, Chen YP, Fang ZM. The amino acid permease OsAAP5 regulates tiller number and grain yield in rice. Plant Physiol. 2019;180:1031–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perchlik M, Tegeder M. Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiol. 2018;175:235–47.
Article
CAS
Google Scholar
Svennerstam H, Ganeteg U, Näsholm T. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease. New Phytol. 2008;18:620–30.
Article
CAS
Google Scholar
Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB. Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant J. 1998;14:535–44.
Article
CAS
PubMed
Google Scholar
Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J. 2009;59:540–52.
Article
CAS
PubMed
Google Scholar
Schmidt R, Stransky H, Koch W. The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta. 2007;226:805–13.
Article
CAS
PubMed
Google Scholar
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN. A gene expression map of the Arabidopsis root. Science. 2003;302:1956–60.
Article
CAS
PubMed
Google Scholar
Okumoto S, Schmidt R, Tegeder M, Fischer WN, Rentsch D, Frommer WB, Koch W. High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem. 2002;277:45338–46.
Article
CAS
PubMed
Google Scholar
Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell. 2010;22:3603–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bayer PE, Hurgobin B, Golicz AA, et al. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J. 2017;15:1602–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chalhoub B, Denoeud F, Liu SY, et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345:950–3.
Article
CAS
PubMed
Google Scholar
Sun F, Fan G, Hu Q, Zhou Y, et al. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J. 2017;92:452–68.
Article
CAS
PubMed
Google Scholar
Rathke GW, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res. 2005;94:103–s.
Article
Google Scholar
Clément G, Moison M, Soulay F, Reisdorf-Cren M, Masclaux-Daubresse C. Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves. J Exp Bot. 2017;69:891–903.
Article
PubMed Central
CAS
Google Scholar
Avice JC, Etienne P. Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.). J Exp Bot. 2014;65:3813–24.
Article
PubMed
Google Scholar
Girondé A, Etienne P, Trouverie J, et al. The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC Plant Biol. 2015;15:59.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci U S A. 2012;109:1187–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family. Plant Physiol Bioch. 2001;39:253–62.
Article
CAS
Google Scholar
Schranz ME, Lysak MA, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 2006;11:535–42.
Article
CAS
PubMed
Google Scholar
Yang Y, Lai K, Tai P, Li W. Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol. 1999;48:597–604.
Article
CAS
PubMed
Google Scholar
Su YH, Frommer WB, Ludewig U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol. 2004;136:3104–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990;4:155–61.
Article
CAS
PubMed
Google Scholar
Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet. 2011;6:59–69.
Google Scholar
Sheflin AM, Chiniquy D, Yuan C, Goren E, Kumar I, Braud M, Brutnell T, Eveland AL, Tringe S, Liu P, Kresovich S, Marsh EL, Schachtman DP, Prenni JE. Metabolomics of sorghum roots during nitrogen stress reveals compromised metabolic capacity for salicylic acid biosynthesis. Plant Direct. 2019;3:e00122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu B, Jiang Z, Wang W, et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants. 2019;5:637.
Article
PubMed
Google Scholar
Loomis WD, Durst RW. 1992. Chemistry and biology of boron. BioFactors. 1992;3:229–39.
CAS
PubMed
Google Scholar
Hua Y, Zhou T, Ding G, Yang Q, Shi L, Xu F. Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes. J Exp Bot. 2016a;67:5769–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua Y, Zhang D, Zhou T, He M, Ding G, Shi L, Xu F. Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant Cell Environ. 2016b;39:1601–18.
Article
CAS
PubMed
Google Scholar
Wang Z, Wang Z, Shi L, Wang L, Xu F. Proteomic alterations of Brassica napus root in response to boron deficiency. Plant Mol Biol. 2010;74:265–78.
Article
CAS
PubMed
Google Scholar
Dong X, Liu G, Wu X, et al. Different metabolite profile and metabolic pathway with leaves and roots in response to boron deficiency at the initial stage of citrus rootstock growth. Plant Physiol Bioch. 2016;108:121–31.
Article
CAS
Google Scholar
Zhang H, Reynolds M. Cadmium exposure in living organisms: a short review. Sci Total Environ. 2019;678:761–7.
Article
CAS
PubMed
Google Scholar
Zhang ZH, Zhou T, Tang TJ, Song HX, Guan CY, Huang JY, Hua YP. A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. J Exp Bot. 2019;70:5437–55.
Article
PubMed
PubMed Central
Google Scholar
Chia MA, Lombardi AT, da Graça Gama Melão M, Parrish CC. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol. 2015;160:87–95.
Article
CAS
PubMed
Google Scholar
Kumar M, Kumari P, Gupta V, Anisha PA, Reddy CRK, Jha B. Differential responses to cadmium induced oxidative stress in marine macroalga Ulva lactuca (Ulvales, Chlorophyta). Biometals. 2010;23:315–25.
Article
CAS
PubMed
Google Scholar
Kovacik J, Klejdus B, Hedbavny J, Backor M. Effect of copper and salicyclic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci. 2010;178:307–11.
Article
CAS
Google Scholar
Shokri-Gharelo R, Noparvar PM. Molecular response of canola to salt stress: insights on tolerance mechanisms. Peer J. 2018;6:e4822.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xie Y, Sun X, Feng Q, Luo H, Wassie M, Amee M, Amombo E, Chen L. Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue. Plant Physiol Biochem. 2019;142:342–50.
Article
CAS
PubMed
Google Scholar
Wang T, Chen Y, Zhang M, Chen J, Liu J, Han H, Hua X. Arabidopsis AMINO ACID PERMEASE1 contributes to salt stress-induced proline uptake from exogenous sources. Front Plant Sci. 2017;8:2182.
Article
PubMed
PubMed Central
Google Scholar
Hua YP, Zhou T, Song HX, Guan CY, Zhang ZH. Integrated genomic and transcriptomic insights into the two-component high-affinity nitrate transporters in allotetraploid rapeseed. Plant Soil. 2018;427:245–68.
Article
CAS
Google Scholar
Ohno S. Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Semin Cell Dev Biol. 1999;10:517–22.
Article
CAS
PubMed
Google Scholar
Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics. 2005;171:765–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids. 2008;35:752–9.
Article
CAS
Google Scholar
Wan Y, King R, Mitchell RAC, Hassani-Pak K, Hawkesford MJ. Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress. Sci Rep. 2017;7:5461.
Article
PubMed
PubMed Central
CAS
Google Scholar
Evans JR, Clarke VC. The nitrogen cost of photosynthesis. J Exp Bot. 2019;70:7–15.
Article
CAS
PubMed
Google Scholar
Liu W, Sun Q, Wang K, Du Q, Li WX. Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis. New Phytol. 2017;214:734–44.
Article
CAS
PubMed
Google Scholar
Tilsner J, Kassner N, Struck C, Lohaus G. Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta. 2005;221:328–38.
Article
CAS
PubMed
Google Scholar
Song J, Jiang L, Jameson PE. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development. J Exp Bot. 2015;66:5067–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, von Wirén N. Ammonium as a signal for physiological and morphological responses in plants. J Exp Bot. 2017;68:2581–92.
Article
CAS
PubMed
Google Scholar
Vega-Mas I, Cukier C, Coleto I, González-Murua C, Limami AM, González-Moro MB, Marino D. Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition. Sci Rep. 2019;9:8925.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koch W, Kwart M, Laubner M, Heineke D, Stransky H, Frommer WB, Tegeder M. Reduced amino acid content in transgenic potato tubers due to antisense inhibition of the leaf H+/amino acid symporter StAAP1. Plant J. 2003;33:211–20.
Article
CAS
PubMed
Google Scholar
Zhang L, Garneau MG, Majumdar R, Grant J, Tegeder M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant J. 2015;81:134–46.
Article
CAS
PubMed
Google Scholar
Rong-Mullins X, Ravishankar A, McNeal KA, Lonergan ZR, Biega AC, Creamer JP, Gallagher JEG. Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae. PLoS One. 2017;12:e0187522.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang X, Wu J, Liang J, Cheng F, Wang X. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources. Database. 2015;2015:1–8.
Google Scholar
Yu J, Zhao M, Wang X, Tong C, Huang S, Tehrim S, Liu Y, Hua W, Liu S. Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics. 2013;14:664.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86.
Article
CAS
PubMed
Google Scholar
Ostergaard L, King GJ. Standardized gene nomenclature for the Brassica genus. Plant Methods. 2008;4:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li S, Chen L, Zhang L, Li X, Liu Y, Wu Z, Dong F, Wan L, Liu K, Hong D, Yang G. BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiol. 2015;169:2744–60.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King GJ, Liu K. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol. 2019;222:837–51.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
Article
CAS
PubMed
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
CAS
PubMed
Google Scholar
Sievers F, Wilm A, Dineen DG, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7:539.
Article
PubMed
PubMed Central
Google Scholar
Wang DP, Zhang YB, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics. 2010;8:77–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000;17:32–43.
Article
CAS
PubMed
Google Scholar
Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004;16:1667–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The Proteomics Protocols Handbook, Humana Press; 2005. p. 571–607.
Chapter
Google Scholar
Hamburger D, Horton P, Park KJ, Obayashi T, Fujita N, Harada H. Adams-Collier C J (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35:W585–7.
Article
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.
Article
CAS
PubMed
Google Scholar
Harrison RG, Bagajewicz MJ. Predicting the solubility of recombinant proteins in Escherichia coli. Methods Mol Biol. 2015;1258:403–8.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.
Article
CAS
PubMed
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Res. 2004;14:1188–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999;27:297–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV. Provart NJ. PLoS One. 2007;2:e718.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maillard AP, Etienne S, Diquélou J, Trouverie V, Billard V, Yvin JC, Ourry A. Nutrient deficiencies in Brassica napus modify the ionomic composition of plant tissues: a focus on cross-talk between molybdenum and other nutrients. J Exp Bot. 2016;67:5631–41.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Yang HL, Liu J, Huang SM, Guo TT, Deng LB, et al. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L. Gene. 2014;538:113–22.
Article
CAS
PubMed
Google Scholar