Fischer RA, Edmeades G. Breeding and cereal yield Progress. Crop Sci. 2010;50(1):S85–98.
Article
Google Scholar
Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang RRC, Xu S, Chen P, et al. Chapter four–genetic diversity for wheat improvement as a conduit to food security. In: Sparks DL, editor. Advances in Agronomy, vol. 122: Academic Press; 2013. p. 179–257.
Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science. 2010;327(5967):818.
Article
CAS
PubMed
Google Scholar
Han HM, Bai L, Su JJ, Zhang JP, Song LQ, Gao AN, Yang XM, Li XQ, Liu WH, Li LH. Genetic rearrangements of six wheat–Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS One. 2014;9(3):e91066.
Article
PubMed
PubMed Central
Google Scholar
Sharma P, Sheikh I, Kumar S, Verma SK, Kumar R, Vyas P, Dhaliwal HS. Precise transfers of genes for high grain iron and zinc from wheat–Aegilops substitution lines into wheat through pollen irradiation. Mol Breed. 2018;38(6):81.
Article
Google Scholar
Zhang QP, Li Q, Wang X, Wang HY, Lang SP, Wang YN, Wang SL, Chen PD, Liu DJ. Development and characterization of a Triticum aestivum–Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica. 2005;145(3):317–20.
Article
CAS
Google Scholar
Rabinovich SV. Importance of wheat–rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica. 1998;100(1):323–40.
Article
Google Scholar
Chen SY. The hybridization between Triticum aestivum and Psathyrostachys huashanica. Acta Genet Sin. 1991;18(6):508–12.
Google Scholar
Fu J, Wang MN, Zhao JX, Chen SY, Hou WS, Yang QH. Studies on cytogenetics and utilization of wheat-Psathyrostachys huashanica medium material H8911 with resistance to wheat take-all fungus. Acta Botan Boreali-Occiden Sin. 2003;23(12):2157–62.
Google Scholar
Zhao JX, Ji WQ, Wu J, Chen XH, Cheng XN, Wang JW, Pang YH, Liu SH, Yang QH. Development and identification of a wheat–Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. Genet Resour Crop Evol. 2010;57(3):387–94.
Article
CAS
Google Scholar
Li Q, Huang J, Hou L, Liu P, Jing J, Wang B, Kang Z. Genetic and molecular mapping of stripe rust resistance gene in wheat–Psathyrostachys huashanica translocation line H9020-1-6-8-3. Plant Dis. 2012;96(10):1482–7.
Article
CAS
PubMed
Google Scholar
Du WL, Wang J, Wang LM, Zhang J, Chen XH, Zhao JX, Yang QH, Wu J. Development and characterization of a Psathyrostachys huashanica Keng 7Ns chromosome addition line with leaf rust resistance. PLoS One. 2012;8(8):e70879.
Article
CAS
Google Scholar
Du WL, Wang J, Lu M, Sun SG, Chen XH, Zhao JX, Yang QH, Wu J. Molecular cytogenetic identification of a wheat–Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Mol Breed. 2013;31(4):879–88.
Article
Google Scholar
Du W, Wang J, Wang L, Wu J, Zhao J, Liu S, Yang Q, Chen X. Molecular characterization of a wheat–Psathyrostachys huashanica Keng 2Ns disomic addition line with resistance to stripe rust. Mol Gen Genomics. 2014;289(5):735–43.
Article
CAS
Google Scholar
Du WL, Wang J, Lu M, Sun SG, Chen XH, Zhao JX, Yang QH, Wu J. Characterization of a wheat-Psathyrostachys huashanica Keng 4Ns disomic addition line for enhanced tiller numbers and stripe rust resistance. Planta. 2014;239(1):97–105.
Article
CAS
PubMed
Google Scholar
Du WL, Wang J, Pang YH, Wang LM, Wu J, Zhao JX, Yang QH, Chen XH. Isolation and characterization of a wheat–Psathyrostachys huashanica ‘Keng’3Ns disomic addition line with resistance to stripe rust. Genome. 2014;57(1):37–44.
Article
CAS
PubMed
Google Scholar
Du WL, Wang J, Pang YH, Wu J, Zhao JX, Liu SH, Yang QH, Chen XH. Development and application of PCR markers specific to the 1Ns chromosome of Psathyrostachys huashanica Keng with leaf rust resistance. Euphytica. 2014;200(2):207–20.
Article
CAS
Google Scholar
Du WL, Zhao JX, Wang J, Wang LM, Wu J, Yang QH, Liu SH, Chen XH. Cytogenetic and molecular marker-based characterization of a wheat–Psathyrostachys huashanica Keng 2Ns(2D) substitution line. Plant Mol Biol Report. 2015;33(3):414–23.
Article
Google Scholar
Li JC, Yao XN, Yang ZJ, Cheng XN, Yuan FP, Liu Y, Wu J, Yang QH, Zhao JX, Chen XH. Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng 5Ns (5D) disomic substitution line with stripe rust resistance. Mol Breed. 2019;39(7):109.
Article
CAS
Google Scholar
Cao Z, Deng Z, Wang M, Wang X, Jing J, Zhang X, Shang H, Li Z. Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat–Psathyrostachys huashanica translocation line. Plant Sci. 2008;174(5):544–9.
Article
CAS
Google Scholar
Kang HY, Zhang ZJ, Xu LL, Qi WL, Tang Y, Wang H, Zhu W, Li DY, Zeng J, Wang Y. Characterization of wheat–Psathyrostachys huashanica small segment translocation line with enhanced kernels per spike and stripe rust resistance. Genome. 2016;59(4):221–9.
Article
CAS
PubMed
Google Scholar
Wang Y, Yu K, Xie Q, Kang H, Lin L, Fan X, Sha L, Zhang H, Zhou Y. The 3Ns chromosome of Psathyrostachys huashanica carries the gene(s) underlying wheat stripe rust resistance. Cytogenetic Genome Res. 2011;134(2):136–43.
Article
CAS
Google Scholar
Ma DF, Zhou XL, Hou L, Bai YB, Li Q, Wang HG, Tang MS, Jing JX. Genetic analysis and molecular mapping of a stripe rust resistance gene derived from Psathynrostachys huashanica Keng in wheat line H9014-121-5-5-9. Mol Breed. 2013;32(2):365–72.
Article
CAS
Google Scholar
An DG, Zheng Q, Zhou YL, Ma PT, Lv ZL, Li LH, Li B, Luo QL, Xu HX, Xu YF. Molecular cytogenetic characterization of a new wheat–rye 4R chromosome translocation line resistant to powdery mildew. Chromosom Res. 2013;21(4):419–32.
Article
CAS
Google Scholar
Wang YJ, Quan W, Peng NN, Wang CY, Yang XF, Liu XL, Zhang H, Chen CH, Ji WQ. Molecular cytogenetic identification of a wheat– Aegilops geniculata Roth 7Mg disomic addition line with powdery mildew resistance. Mol Breed. 2016;36:40.
Zhan HX, Xiaojun Z, Li GR, Pan ZH, Hu J, Li X, Qiao LY, Jia JQ, Guo HJ, Chang ZJ, et al. Molecular characterization of a new wheat–Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int J Mol Sci. 2015;16:2162–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao AZ, Xing LP, Wang XY, Yang XM, Wang W, Sun YL, Qian C, Ni JL, Chen YP, Liu DJ, et al. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci. 2011;108:7727–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Annamaria S, Linc G, Molnar-Lang M, Graner A. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed. 2003;122:396–400.
Article
Google Scholar
Yang XF, Wang CY, Li X, Chen CH, Tian ZR, Wang YJ, Ji WQ. Development and molecular cytogenetic identification of a novel wheat–Leymus mollis lm#7Ns (7D) disomic substitution line with stripe rust resistance. PLoS One. 2015;10(10):e0140227.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith EL, Mac Key J, Qualset C. Conventional methods of wheat breeding. In: Genetic Improvement in Yield of Wheat. America: Crop Science Society of America and American Society of Agronomy; 1986.
Book
Google Scholar
Bajaj YPS, Gosal SS. Biotechnology of Wheat Improvement. In: YPS B, editor. Crops I. Berlin: Springer Berlin Heidelberg; 1986. p. 3–38.
Chapter
Google Scholar
Li Z, Li B, Tong Y. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Gen Genomics. 2008;35(8):451–6.
Article
Google Scholar
Cifuentes M, Benavente E. Wheat-alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. Theor Appl Genet. 2009;119(5):805–13.
Article
CAS
PubMed
Google Scholar
Li CZ, Huang HQ, Yin FY, Wang ZY, Peng YK, Xie CJ, Liu ZY, Sun QX, Yang ZM. The effect of Haynaldia villosa v chromosome on the mitochondrial proteome of wheat-H. villosa chromosome substitution line and translocation line. J Mol Cell Biol. 2008;41(2):150–4.
CAS
Google Scholar
Ren TH, Chen F, Yan BJ, Zhang HQ, Ren ZL. Genetic diversity of wheat–rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica. 2012;183(2):133–46.
Article
Google Scholar
Danilova TV, Friebe B, Gill BS, Poland J, Jackson E. Chromosome rearrangements caused by double monosomy in wheat-barley group-7 substitution lines. Cytogenet Genome Res. 2018;154(1):45–55.
Article
CAS
PubMed
Google Scholar
Du XY, Ma X, Min JZ, Zhang XC, Jia ZZ. Development of a wheat-Aegilops searsii substitution line with positively affecting Chinese steamed bread quality. Breed Sci. 2018;68(2):289–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, Pozniak CJ, Choulet F, Distelfeld A, Poland J, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191.
Article
CAS
Google Scholar
Tang ZX, Yang ZJ, Fu SL. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet. 2014;55(3):313–8.
Article
CAS
PubMed
Google Scholar
Qi WL, Tang Y, Zhu W, Li DY, Diao CD, Xu LL, Zeng J, Wang Y, Fan X, Sha LN, et al. Molecular cytogenetic characterization of a new wheat-rye 1BL•1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta. 2016;244(2):405–16.
Article
CAS
PubMed
Google Scholar
Zhu C, Wang YZ, Chen CH, Wang CY, Zhang A, Peng NN, Wang YJ, Zhang H, Liu XL, Ji WQ. Molecular cytogenetic identification of a wheat–Thinopyrum ponticum substitution line with stripe rust resistance. Genome. 2017;60(10):860–7.
Article
CAS
PubMed
Google Scholar
Wang J, Liu YL, Su HD, Guo XR, Han FP. Centromere structure and function analysis in wheat-rye translocation lines. Plant J. 2017;91(2):199–207.
Article
CAS
PubMed
Google Scholar
Wang HJ, Zhang HJ, Li B, Yu ZH, Li GR, Zhang J, Yang ZJ. Molecular cytogenetic characterization of new wheat– Dasypyrum Breviaristatum introgression lines for improving grain quality of wheat. Frontiers Plant Sci. 2018;9:365.
Yuan FP, Zeng QD, Wu JH, Wang QL, Yang ZJ, Liang BP, Kang ZS, Chen XH, Han DJ. QTL mapping and validation of adult plant resistance to stripe rust in chinese wheat landrace humai 15. Front Plant Sci. 2018;9:968.
Article
PubMed
PubMed Central
Google Scholar
Sidhu G, Rustgi S, Shafqat M, Wettstein D, Gill K. Fine structure mapping of a gene-rich region of wheat carrying Ph1, a suppressor of crossing over between homoeologous chromosomes. Proc Natl Acad Sci U S A. 2008;105:5815–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature. 2006;439(7077):749–52.
Article
CAS
PubMed
Google Scholar
Yang MY, Yang ZJ, Yang WY, Yang EN. Development and identification of new wheat varieties (lines) with multiple translocation chromosomes via cytogenetic method. J Triticeae Crops. 2018;38(2):127–33.
CAS
Google Scholar
Chen SG, Wang JX. Screening wild relatives of wheat for disease reisistance. Sci Agric Sin. 1990;23(1):54–9.
Google Scholar
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.
Google Scholar
Danilova TV, Friebe B, Gill BS. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma. 2012;121(6):597–611.
Article
CAS
PubMed
Google Scholar
Pestsova E, Ganal MW, Röder MS. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome. 2000;43(4):689–97.
Article
CAS
PubMed
Google Scholar
Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 2004;109(6):1105–14.
Article
CAS
PubMed
Google Scholar
DOĞRAR N, Akkaya MS. Optimization of PCR amplification of wheat simple sequence repeat DNA markers. Turk J Biol. 2001;25(2):153–8.
Google Scholar
Wetzel JB, Rayburn AL. Use of fluorescence genomic in situ hybridization (GISH) to detect the presence of alien chromatin in wheat lines differing in nuclear DNA content. Cytometry. 2000;41:36–40.
Article
CAS
PubMed
Google Scholar
Zhao JX, Du WL, Wu J, Cheng XN, Gao Y, Pang YH, Chen XH, Liu SH, Yang QH, Fu J. Development and identification of a wheat–Leymus mollis multiple alien substitution line. Euphytica. 2013;190(1):45–52.
Article
Google Scholar
Patokar C, Sepsi A, Schwarzacher T, Kishii M, Heslop-Harrison JS. Molecular cytogenetic characterization of novel wheat–Thinopyrum bessarabicum recombinant lines carrying intercalary translocations. Chromosoma. 2016;125(1):163–72.
Article
CAS
PubMed
Google Scholar
Lang T, Li GR, Wang HJ, Yu ZH, Chen QH, Yang EN, Fu SL, Tang ZX, Yang ZJ. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta. 2019;249(3):663–75.
Article
CAS
PubMed
Google Scholar
Sheng BQ. Grades of resistance to powdery mildew classified by different phenotypes of response in the seeding stage of wheat. Plant Prot. 1988;1:49.
Google Scholar
An DG, Ma PT, Zheng Q, Fu SL, Li LH, Han FP, Han GH, Wang J, Xu YF, Jin YL, et al. Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theor Appl Genet. 2019;132(1):257–72.
Article
CAS
PubMed
Google Scholar
Liu SX, Griffey C, Maroof S. Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar massey. Crop Sci. 2001;41:1268–75.
Article
CAS
Google Scholar