García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzuéla P. Plant defense peptides. Biopolymers. 1998;47:479–91.
Article
PubMed
Google Scholar
Thomma BP, Cammue BP, Thevissen K. Plant defensins. Planta. 2002;216:193–202.
Article
CAS
PubMed
Google Scholar
Fant F, Vranken W, Broekaert W, Borremans F. Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. J Mol Biol. 1998;279:257–70.
Article
CAS
PubMed
Google Scholar
Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–20.
Article
CAS
PubMed
Google Scholar
Thevissen K, Warnecke DC, François IEJA, Leipelt M, Heiz E, Ott C, Zähringer U, Thomma BP, Ferket KK, Cammue BP. Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem. 2004;279:3900–5.
Article
CAS
PubMed
Google Scholar
Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell. 1996;8:2309–23.
CAS
PubMed
PubMed Central
Google Scholar
Koike M, Okamoto T, Tsuda S, Imai R. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem Bioph Res Co. 2002;298:46–53.
Article
CAS
Google Scholar
Do HM, Lee SC, Jung HW, Sohn KH, Hwang BK. Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci. 2004;166:1297–305.
Article
CAS
Google Scholar
Mirouze M, Sels J, Richard O, Czrnic P, Loubet S, Jacqyuier A, François IE, Cammue BP, Lebrun M, Berthomieu P, Marquès L. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J. 2006;47:329–42.
Article
CAS
PubMed
Google Scholar
Vriens K, Peigneur S, De Coninck B, Tytgat J, Cammue BP, Thevissen K. The antifungal plant defensin AtPDF2. 3 from A. thaliana blocks potassium channels. Sci Rep. 2016;6:32121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong JM. A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun. 2018;9:645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo JS, Yang Y, Gu TY, Wu ZM, Zhang ZH. The Arabidopsis defensin gene AtPDF2. 5 mediates cadmium tolerance and accumulation. Plant Cell Environ. 2019:1–15. https://doi.org/10.1111/pce.13592.
Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science. 2014;346:343–6.
Article
CAS
PubMed
Google Scholar
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature. 2018;556:235–8.
Article
CAS
PubMed
Google Scholar
Delay C, Imin N, Djordjevic MA. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J Exp Bot. 2013;64:5383–94.
Article
CAS
PubMed
Google Scholar
Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M. NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. P Natl Acad Sci USA. 2014;111:14607–12.
Article
CAS
Google Scholar
Hu B, Jiang ZM, Wang W, Qiu YH, Zhang ZH, Liu YQ, Li AF, Gao XK, Liu LH, Qian YW, Huang XH, Yu FF, Kang S, Wang YQ, Xie JP, Cao SY, Zhang LH, Wang YC, Xie Q, Kopriva S, Chu CC. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants. 2019;5:401–13.
Article
CAS
PubMed
Google Scholar
Crawford NM. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995;7:859–68.
CAS
PubMed
PubMed Central
Google Scholar
Barlóg P, Grzebisz W. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). II. Nitrogen uptake dynamics and fertilizer efficiency. J Agron Crop Sci. 2004;190:314–23.
Article
Google Scholar
Grant CA, Wu R, Selles F, Harker KN, Clayton GW, Bittman S, Zebarth BJ, Lupwayi NZ. Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding. Field Crop Res. 2012;127:170–80.
Article
Google Scholar
MacKintosh C, Meek SEM. Regulation of plant NR activity by reversible phosphorylation, 14-3-3 proteins and proteolysis. Cell Mol Life Sci. 2001;58:205–14.
Article
CAS
PubMed
Google Scholar
Hoff T, Truong HN, Caboche M. The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ. 1994;17:489–506.
Article
CAS
Google Scholar
Konishi M, Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun. 2013;4:1617–25.
Article
CAS
PubMed
Google Scholar
Konishi M, Yanagisawa S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. J Exp Bot. 2014;65:5589–600.
Article
CAS
PubMed
Google Scholar
Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Biol. 1996;47:569–93.
Article
CAS
Google Scholar
Khademi S, O'Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science. 2004;305:1587–94.
Article
CAS
PubMed
Google Scholar
Ortiz-Ramirez C, Mora SI, Trejo J, Pantoja O. PvAMT1;1, a highly selective ammonium transporter that functions as an H+/NH4+ symporter. J Biol Chem. 2011;286:31113–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lothier J, Gaufichon L, Sormani R, Lemaître T, Azzopardi M, Morin H, Chardon F, Reisdorf-Cren M, Avice J, Masclaux-Daubresse C. The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting. J Exp Bot. 2011;62:1375–90.
Article
CAS
PubMed
Google Scholar
Guan M, Møller IS, Schjørring JK. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis. J Exp Bot. 2014;66:203–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan M, de Bang TC, Pedersen C, Schjoerring JK. Cytosolic glutamine synthetase Gln1; 2 is the main isozyme contributing to GS1 activity and can be up-regulated to relieve ammonium toxicity. Plant Physiol. 2016;171:1921–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem. 2004;279:16598–605.
Article
CAS
PubMed
Google Scholar
Konishi N, Saito M, Imagawa F, Kanno K, Yamaya T, Kojima S. Cytosolic glutamine synthetase isozymes play redundant roles in ammonium assimilation under low-ammonium conditions in roots of Arabidopsis thaliana. Plant Cell Physiol. 2018;59:601–13.
Article
CAS
PubMed
Google Scholar
Martin A, Belastegui-Macadam X, Quilleré I, Floriot M, Valadier MH, Pommel B, Andrieu B, Donnison I, Hirel B. Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness: agronomic, physiological and molecular aspects. New Phytol. 2005;167:483–92.
Article
CAS
PubMed
Google Scholar
Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash D, Lea P, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell. 2006;18:3252–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dragićević M, Simonović A, Bogdanović M, Subotić A, Ghalawenji N, Dragićević I, Todorović S. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings. Arch Biol Sci. 2016;68:399–404.
Article
Google Scholar
Taira M, Valtersson U, Burkhardt B, Ludwig RA. Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell. 2004;16:2048–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu G, Fan X, Miller AJ. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol. 2012;63:153–82.
Article
CAS
PubMed
Google Scholar
Fontaine JX, Tercé-Laforgue T, Armengaud P, Clément G, Renou JP, Pelletier S, Catterou M, Azzopardi M, Gibon Y, Lea PJ, Hirel B, Dubois F. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell. 2012;24:4044–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tercé-Laforgue T, Bedu M, Dargel-Grafin C, Dubois F, Gibon Y, Restivo FM, Hirel B. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously. Plant Cell Physiol. 2013;54:1635–47.
Article
CAS
PubMed
Google Scholar
Meyer C, Stitt M. Nitrate reduction and signalling. Plant nitrogen. Berlin: Springer; 2001. p. 37–59.
Google Scholar
Forde BG. Nitrogen signalling pathways shaping root system architecture: an update. Curr Opin Plant Biol. 2014;21:30–6.
Article
CAS
PubMed
Google Scholar
Nacry P, Bouguyon E, Gojon A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil. 2013;370:1–29.
Article
CAS
Google Scholar
Sohlenkamp C, Shelden M, Howitt S, Udvardi M. Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett. 2000;467:273–8.
Article
CAS
PubMed
Google Scholar
Giehl RFH, Laginha AM, Duan F, Rentsch D, Yuan L, von Wirén N. A critical role of AMT2; 1 in root-to-shoot translocation of ammonium in Arabidopsis. Mol Plant. 2017;10:1449–60.
Article
CAS
PubMed
Google Scholar
Mendez E, Moreno A, Colilla F, Pelaez F, Limas GG, Mendez R, Soriano F, Salinas M, de HARO C. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley. Biochemistry. 1990;194:533–9.
CAS
Google Scholar
De Coninck BM, Sels J, Venmans E, Thys W, Goderis IJ, Carron D, Delauré SL, Cammue BP, De Bolle MF, Mathys J. Arabidopsis thaliana plant defensin AtPDF1. 1 is involved in the plant response to biotic stress. New Phytol. 2010;187:1075–88.
Article
CAS
PubMed
Google Scholar
Shahzad Z, Ranwez V, Fizames C, Marquès L, Le Martret B, Alassimone J, Godé C, Lacombe E, Castillo T, Saumitou-Laprade P, Berthomieu P, Gosti F. Plant Defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri. New Phytol. 2013;200:820–33.
Article
CAS
PubMed
Google Scholar
Nguyen NN, Ranwez V, Vile D, SOULIE MC, Dellagi A, Expert D, Gosti F. Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack. Front Plant Sci. 2014;5:70.
Article
PubMed
PubMed Central
Google Scholar
Kragh KM, Nielsen JE, Nielsen KK, Dreboldt S, Mikkelsen JD. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris. Mol Plant-Microbe Interact. 1995;8:424–34.
Article
CAS
PubMed
Google Scholar
Ji Y, Li Q, Liu G, Selvaraj G, Zheng Z, Zou J, Wei Y. Roles of cytosolic glutamine Synthetases in Arabidopsis development and stress responses. Plant Cell Physiol. 2019;60:657–71.
Article
PubMed
Google Scholar
Konishi N, Ishiyama K, Beier MP, Inoue E, Kanno K, Yamaya T, Takahashi H, Kojima S. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. J Exp Bot. 2016;68:613–25.
PubMed Central
Google Scholar
Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants. 2017;3:17029.
Article
CAS
PubMed
Google Scholar
Zhang GB, Yi HY, Gong JM. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. Plant Cell. 2014;26:3984–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.
Article
CAS
PubMed
Google Scholar
Cataldo DA, Maroon M, Schrader LE, Youngs VL. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plan. 1975;6:71–80.
Article
CAS
Google Scholar
Santoni S, Bonifacio E, Zanini E. Indophenol blue colorimetric method for measuring cation exchange capacity in sandy soils. Commun Soil Sci Plant. 2001;32:2519–30.
Article
CAS
Google Scholar
Singh R, Parihar P, Prasad SM. Sulfur and calcium simultaneously regulate photosynthetic performance and nitrogen metabolism status in As-challenged Brassica juncea L seedlings. Front Plant Sci. 2018;9:772.
Article
PubMed
PubMed Central
Google Scholar
Molins-Legua C, Meseguer-Lloret S, Moliner-Martinez Y, Campíns-Falcó P. A guide for selecting the most appropriate method for ammonium determination in water analysis. Trac-Trend Anal Chem. 2006;25:282–90.
Article
CAS
Google Scholar
Patterson K, Cakmak T, Cooper A, Lager I, Rasmusson AG, Escober MA. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ. 2010;33:1486–501.
CAS
PubMed
PubMed Central
Google Scholar
Wang RC, Xing XJ, Wang Y, Tran A, Crawford NM. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol. 2009;151:472–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Li MC, Luo J, Cao X, Qu L, Gai Y, Jiang XN, Liu TX, Bai H, Janz D, Polle A, Peng CH, Luo ZB. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species. J Exp Bot. 2012;63:6173–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rennenberg H, Wildhagen H, Ehlting B. Nitrogen nutrition of poplar trees. Plant Biol. 2010;12:275–91.
Article
CAS
PubMed
Google Scholar
Robin P. Etude de quelques conditions d’extraction de la nitrate reductase des racines et des feuilles de plantules de maïs. Physiol Veg. 1979;17:45–54.
CAS
Google Scholar
Ehlting B, Dluzniewska P, Dietrich H, Selle A, Teuber M, Hänsch R, Nehls U, Polle A, Schnitzler JP, Rennenberg H, Gessler A. Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula × alba). Plant Cell Environ. 2007;30:796–811.
Article
CAS
PubMed
Google Scholar
Wang L, Zhou Q, Ding L, Sun Y. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J Hazard Mater. 2008;154:818–25.
Article
CAS
PubMed
Google Scholar
Del Campo CP, Garde-Cerdán T, Sánchez AM, Maggi L, Carmona M, Alonso GL. Determination of free amino acids and ammonium ion in saffron (Crocus sativus L.) from different geographical origins. Food Chem. 2009;114:1542–8.
Article
CAS
Google Scholar
Li JY, Fu YL, Pike SM, Bao J, TianW ZY, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell. 2010;22:1633–46.
Article
CAS
PubMed
PubMed Central
Google Scholar