Charlesworth D. Plant sex determination and sex chromosomes. Heredity. 2002;88:94–101.
Article
PubMed
Google Scholar
Charlesworth D. Plant sex chromosomes. Annu Rev Plant Biol. 2016;67:397–420.
Article
CAS
PubMed
Google Scholar
Pannell JR. Plant sex determination. Curr Biol. 2017;27:R191–7.
Article
CAS
PubMed
Google Scholar
Aryal R, Ming R. Sex determination in flowering plants: papaya as a model system. Plant Sci. 2014;217–218:56–62.
Article
PubMed
CAS
Google Scholar
Ming R, Yu Q, Moore PH. Sex determination in papaya. Semin Cell Dev Biol. 2007;18:401–8.
Article
CAS
PubMed
Google Scholar
VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, et al. Origin and domestication of papaya Y h chromosome. Genome Res. 2015;25:524–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Na J-K, Yu Q, Gschwend AR, Han J, Zeng F, et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci. 2012;109:13710–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Z, Yu Q, Ming R. Development of male-specific markers and identification of sex reversal mutants in papaya. Euphytica. 2017;213(2):53. https://doi.org/10.1007/s10681-016-1806-z.
Ronse De Craene LP, Smets EF. The floral development and anatomy of Carica papaya Caricaceae. Can J Bot. 1999;77:582–98.
Google Scholar
De R, Craene L, Tréhin C, Morel P, Negrutiu I. Carpeloidy in flower evolution and diversification: a comparative study in Carica papaya and Arabidopsis thaliana. Ann Bot. 2011;107:1453–63.
Article
Google Scholar
Allan P, Mc Chlery J, Biggs D. Environmental effects on clonal female and male Carica papaya L. plants. Sci Hortic. 1987;32:221–32.
Article
Google Scholar
Iorns MJ. Observations on change of sex in Carica papaya. Science. 1908;28:125–6.
Article
CAS
PubMed
Google Scholar
Kumar A, Jaiswal VS. Sex reversal and fruit formation on male plants of Carica Papaya L. by ethrel and chlorflurenol. Proc Plant Sci. 1984;93:635–41.
CAS
Google Scholar
Kumar A. Feminization of androecious papaya leading to fruit set by ethrel and chlorflurenol. Acta Hortic. 1998;463:251–60. https://doi.org/10.17660/ActaHortic.1998.463.30.
Mitra SK, Ghanta PK. Modification of sex expression in papaya Carica papaya L. cv. Ranchi. Acta Hortic. 2000; 515:281–6.
Lin H, Liao Z, Zhang L, Yu Q. Transcriptome analysis of the male-to-hermaphrodite sex reversal induced by low temperature in papaya. Tree Genet Genomes. 2016;12:94. https://doi.org/10.1007/s11295-016-1055-2.
Chan YK. Studies on carpellody of stamens in papaya Carica papaya L. MARDI Res Bull. 1984;12(2):157–62.
Google Scholar
Bogantes-Arias A, Mora-Newcomer E. Influence of genotype and temperature on carpellody of papaya. Agron Mesoam. 2017;28:557–90.
Article
Google Scholar
Jiménez VM, Mora-Newcomer E, Gutiérrez-Soto MV. Biology of the papaya plant. In: Ming R, Moore PH, editors. Genetics and genomics of papaya. New York, NY: Springer New York; 2014. p. 17–33. https://doi.org/10.1007/978-1-4614-8087-7_2.
Chapter
Google Scholar
Ackerman CM, Yu Q, Kim S, Paull RE, Moore PH, Ming R. B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI. Planta. 2008;227:741–53.
Article
CAS
PubMed
Google Scholar
Lee MJ, Yang WJ, Chiu CT, Chen JJ, Chen FC, Chang LS. Isolation and characterization of the papaya MADS-box E-class genes, CpMADS1 and CpMADS3, and a TM6 lineage gene CpMADS2. Genet Mol Res. 2014;13:5299–312.
Article
PubMed
CAS
Google Scholar
Liu J, Chatham L, Aryal R, Yu Q, Ming R. Differential methylation and expression of HUA1 ortholog in three sex types of papaya. Plant Sci. 2018;272:99–106.
Article
CAS
PubMed
Google Scholar
Urasaki N, Tarora K, Shudo A, Ueno H, Tamaki M, Miyagi N, et al. Digital Transcriptome analysis of putative sex-determination genes in papaya Carica papaya. PLoS One. 2012;7:e40904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu Q, Hou S, Feltus FA, Jones MR, Murray JE, Veatch O, et al. Low X/Y divergence in four pairs of papaya sex-linked genes. Plant J. 2008;53:124–32.
Article
CAS
PubMed
Google Scholar
Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K, Shudo A, et al. Genome sequence comparison reveals a candidate gene involved in male–hermaphrodite differentiation in papaya Carica papaya trees. Mol Gen Genomics. 2015;290:661–70.
Article
CAS
Google Scholar
Lee CY, Lin H, Viswanath K, Lin C, Chang B, Chiu P, et al. The development of functional mapping by three sex-related loci on the third whorl of different sex types of Carica papaya L. PLoS One. 2018;13:e0194605.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garg R, Jain M. RNA-Seq for Transcriptome analysis in non-model plants. In: Rose RJ, editor. Legume Genomics. Totowa, NJ: Humana Press; 2013. p. 43–58. https://doi.org/10.1007/978-1-62703-613-9_4.
Chapter
Google Scholar
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mouriz A, López-González L, Jarillo JA, Piñeiro M. PHDs govern plant development. Plant Signal Behav. 2015;10(7):e993253. https://doi.org/10.4161/15592324.2014.993253.
Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors: MS1 a transcriptional regulator of male gametogenesis. Plant J. 2001;28:27–39.
Article
CAS
PubMed
Google Scholar
Ito T, Shinozaki K. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in Tapetal cells and is required for pollen maturation. Plant Cell Physiol. 2002;43(11):1285–92. https://doi.org/10.1093/pcp/pcf154.
Article
CAS
PubMed
Google Scholar
Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K. Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and Tapetum development. Plant Cell. 2007;19(11):3549–62. https://doi.org/10.1105/tpc.107.054536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C, Vizcay-Barrena G, Conner K, Wilson ZA. MALE STERILITY1 is required for Tapetal development and Pollen Wall biosynthesis. Plant Cell. 2007;19:3530–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vizcay-Barrena G. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot. 2006;57:2709–17.
Article
CAS
PubMed
Google Scholar
Fernández Gómez J, Wilson ZA. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J. 2014;12:765–77.
Article
PubMed
CAS
Google Scholar
Qi Y, Liu Q, Zhang L, Mao B, Yan D, Jin Q, et al. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theor Appl Genet. 2014;127:1173–82.
Article
CAS
PubMed
Google Scholar
Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L. The large-scale organization of metabolic networks. Nature. 2000;407:651–4.
Article
CAS
PubMed
Google Scholar
Murase K, Shigenobu S, Fujii S, Ueda K, Murata T, Sakamoto A, et al. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells. 2017;22:115–23.
Article
CAS
PubMed
Google Scholar
Akagi T, Pilkington SM, Varkonyi-Gasic E, Henry IM, Sugano SS, Sonoda M, et al. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat Plants. 2019;5:801–9.
Article
CAS
PubMed
Google Scholar
Harkess A, Mercati F, Shan H-Y, Sunseri F, Falavigna A, Leebens-Mack J. Sex-biased gene expression in dioecious garden asparagus Asparagus officinalis. New Phytol. 2015;207:883–92.
Article
CAS
PubMed
Google Scholar
Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, Ayyampalayam S, et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun. 2017;8:1279.
Article
PubMed
PubMed Central
CAS
Google Scholar
Allan P. Pollen studies in Carica papaya. I. Formation, development, morphology and production of pollen. S.d Afr J Agric Sci. 1963;6:517–30.
Google Scholar
Saran P, Solanki I, Choudhary R. Papaya: biology, cultivation, production and uses. Volume 1. 1st edition. Florida:CRC Press Taylor & Francis Group; 2016:11–52. https://doi.org/10.1201/b18955.
Book
Google Scholar
Santos LMS, Pereira TNS, de Souza MM, Damasceno Junior PC, da Costa FR, Ribeiro BF, et al. Optical and ultrastructural study of the pollen grain development in hermaphrodite papaya tree Carica papaya L. Braz Arch Biol Technol. 2008;51:539–45.
Article
Google Scholar
Verma N. Transcriptional regulation of anther development in Arabidopsis. Gene. 2019;689:202–9.
Article
CAS
PubMed
Google Scholar
Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early Sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999;96:11664–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang W-C, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 1999;13:2108–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D-D, Xue J-S, Zhu J, Yang Z-N. Gene regulatory network for Tapetum development in Arabidopsis thaliana. Front Plant Sci. 2017;8:1559.
Article
PubMed
PubMed Central
Google Scholar
Zhu J, Lou Y, Xu X, Yang Z-N. A genetic pathway for Tapetum development and function in Arabidopsis. J Integr Plant Biol. 2011;53:892–900.
Article
CAS
PubMed
Google Scholar
Zhang W. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 DYT1 encoding a putative bHLH transcription factor. Development. 2006;133:3085–95.
Article
CAS
PubMed
Google Scholar
Gu J-N, Zhu J, Yu Y, Teng X-D, Lou Y, Xu X-F, et al. DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. Plant J. 2014;80:1005–13.
Article
CAS
PubMed
Google Scholar
Zhu E, You C, Wang S, Cui J, Niu B, Wang Y, et al. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J. 2015;83:976–90.
Article
CAS
PubMed
Google Scholar
Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, et al. ABORTED MICROSPORES acts as a master regulator of Pollen Wall formation in Arabidopsis. Plant Cell. 2014;26:1544–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lou Y, Zhou H-S, Han Y, Zeng Q-Y, Zhu J, Yang Z-N. Positive regulation of AMS by TDF1 and the formation of a TDF1-AMS complex are required for anther development in Arabidopsis thaliana. New Phytol. 2018;217:378–91.
Article
CAS
PubMed
Google Scholar
Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot. 2016;67:6309–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot. 2013;64:675–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, et al. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J Exp Bot. 2016;67:195–205.
Article
CAS
PubMed
Google Scholar
Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010;143:606–16.
Article
CAS
PubMed
Google Scholar
Wells DM, Wilson MH, Bennett MJ. Feeling UPBEAT about growth: linking ROS gradients and cell proliferation. Dev Cell. 2010;19:644–6.
Article
CAS
PubMed
Google Scholar
Schmidt R, Schippers JHM. ROS-mediated redox signaling during cell differentiation in plants. Biochim Biophys Acta BBA - Gen Subj. 1850;2015:1497–508.
Google Scholar
Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, et al. Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes. Front Plant Sci. 2016;7:1299. https://doi.org/10.3389/fpls.2016.01299.
Zafra A, Rodríguez-García M, Alché J. Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biol. 2010;10:36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nole-Wilson S, Tranby TL, Krizek BA. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol. 2005;57:613–28.
Article
CAS
PubMed
Google Scholar
Yano R, Kanno Y, Jikumaru Y, Nakabayashi K, Kamiya Y, Nambara E. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in Abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiol. 2009;151:641–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuwamoto R, Yokoi S, Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol. 2010;73:481–92.
Article
CAS
PubMed
Google Scholar
Krizek BA. Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet. 1999;25:224–36.
Article
CAS
PubMed
Google Scholar
Lian G, Ding Z, Wang Q, Zhang D, Xu J. Origins and evolution of WUSCHEL-related Homeobox protein family in plant kingdom. Sci World J. 2014;2014:1–12.
Article
CAS
Google Scholar
Deveaux Y, Toffano-Nioche C, Claisse G, Thareau V, Morin H, Laufs P, et al. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evol Biol. 2008;8:291.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis. Plant Cell. 1989;1:37–52.
CAS
PubMed
PubMed Central
Google Scholar
Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990;346:35–9.
Article
CAS
PubMed
Google Scholar
Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell. 1992;71:119–31.
Article
CAS
PubMed
Google Scholar
Park SO. The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development. Development. 2005;132:841–9.
Article
CAS
PubMed
Google Scholar
Krizek BA. AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development. J Exp Bot. 2015;66:4537–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill JP, Lord EM. Floral development in Arabidopsis thaliana : a comparison of the wild type and the homeotic pistillata mutant. Can J Bot. 1989;67:2922–36.
Article
Google Scholar
Krizek BA, Meyerowitz EM. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development. 1996;122:11.
CAS
PubMed
Google Scholar
Wuest SE, O’Maoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, et al. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci. 2012;109:13452–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krizek BA, Prost V, Macias A. AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS. Plant Cell. 2000;12:1357–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koizumi K. VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development. 2005;132:1699–711.
Article
CAS
PubMed
Google Scholar
Nemhauser JL, Feldman LJ, Zambryski PC. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development. 2000;127:3877.
CAS
PubMed
Google Scholar
Larsson E, Franks RG, Sundberg E. Auxin and the Arabidopsis thaliana gynoecium. J Exp Bot. 2013;64:2619–27.
Article
CAS
PubMed
Google Scholar
Leinonen R, Sugawara H, Shumway M, on behalf of the International Nucleotide Sequence Database Collaboration. The Sequence Read Archive. Nucleic Acids Res. 2011;39 Database:D19–21.
Andrews S. FastQC A Quality Control tool for High Throughput Sequence Data. 2016. https://www.bioinformatics.babraham.ac.uk/projects /fastqc/. .
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
PubMed
Google Scholar
Conesa A, Götz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:1–12.
Article
CAS
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Götz S, Arnold R, Sebastián-León P, Martín-Rodríguez S, Tischler P, Jehl M-A, et al. B2G-FAR, a species-centered GO annotation repository. Bioinformatics. 2011;27:919–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded annotation data from gene ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45:D183–9.
Article
CAS
PubMed
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32.
Article
CAS
PubMed
Google Scholar
Schultz J. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 2000;28:231–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–6.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–9.
Article
CAS
PubMed
Google Scholar