Dugas DV, Bartel B. MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol. 2004;7(5):512–20.
Article
CAS
PubMed
Google Scholar
Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136(4):669–87.
Article
CAS
PubMed
Google Scholar
Huang SC, Lu GH, Tang CY, Ji YJ, Tan GS, Hu DQ, Cheng J, Wang GH, Qi JL, Yang YH. Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean. Biol Plant. 2017:1–12.
Nag A, King S. Jack T: miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci U S A. 2009;106(52):22534–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature. 2003;425(6955):257–63.
Article
CAS
PubMed
Google Scholar
Sun X, Wang C, Xiang N, Li X, Yang S, Du JC, Yang Y, Yang Y. Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor. Plant Biotechnol J. 2017;15(10):1284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang ST, Sun XL, Hoshino Y, Yu Y, Jia B, Sun ZW, Sun MZ, Duan XB, Zhu YM: MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PloS one 2014, 9(3):e91357.
Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett. 2011;33(2):403–9.
Article
CAS
PubMed
Google Scholar
Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004;16(8):2001–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot. 2010;61(15):4157–68.
Article
CAS
PubMed
Google Scholar
Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping Bentgrass. Plant Physiol. 2013;161(3):1375–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ. 2013;36(12):2207–18.
Article
CAS
PubMed
Google Scholar
Nath U, Crawford BCW, Carpenter R, Coen E. Genetic control of surface curvature. Science. 2003;299(5611):1404–7.
Article
CAS
PubMed
Google Scholar
Chinnusamy V, Zhu J, Zhu J-K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007;12(10):444–51.
Article
CAS
PubMed
Google Scholar
Zhou MQ, Shen C, Wu LH, Tang KX, Lin J. CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol. 2011;31(2):186–92.
Article
CAS
PubMed
Google Scholar
Li J, Wang Y, Yu B, Song Q, Liu Y, Chen THH, Li G, Yang X. Ectopic expression of StCBF1and ScCBF1 have different functions in response to freezing and drought stresses in Arabidopsis. Plant Sci. 2018;270:221–33.
Article
CAS
PubMed
Google Scholar
Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu J-K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 2016;171(4):2744–59.
CAS
PubMed
PubMed Central
Google Scholar
Novillo F, Medina J, Salinas J: Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon, vol. 104; 2008.
Jia Y, Ding Y, Shi Y, Zhang X, Gong Z, Yang S. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016;212(2):345–53.
Article
CAS
PubMed
Google Scholar
Hahn A, Bublak D, Schleiff E, Scharf KD. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell. 2011;23(2):741–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf K-D. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 2002;16(12):1555–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 2017;22(1):53–65.
Article
CAS
PubMed
Google Scholar
Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem. 2007;282(52):37794–804.
Article
CAS
PubMed
Google Scholar
Iki T, Yoshikawa M, Nishikiori M, Jaudal MC, Matsumoto-Yokoyama E, Mitsuhara I, Meshi T, Ishikawa M. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell. 2010;39(2):282–91.
Article
CAS
PubMed
Google Scholar
Stief A, Altmann S, Hoffmann K, Pant BD, Scheible W-R. Bäurle I: <em>Arabidopsis miR156</em> regulates tolerance to recurring environmental stress through <em>SPL</em> transcription factors. The Plant Cell Online. 2014.
Stief A, Brzezinka K, Lämke J, Bäurle I. Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signal Behav. 2014;9(10):e970430.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guan Q, Lu X, Zeng H, Zhang Y, Zhu J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. The Plant journal : for cell and molecular biology. 2013;74(5):840–51.
Article
CAS
Google Scholar
Wang R, Xu L, Zhu X, Zhai L, Wang Y, Yu R, Gong Y, Limera C, Liu L. Transcriptome-wide characterization of novel and heat-stress-responsive microRNAs in radish (Raphanus Sativus L.) using next-generation sequencing. Plant Mol Biol Report. 2015;33(4):867–80.
Article
CAS
Google Scholar
Zhou R, Wang Q, Jiang F, Cao X, Sun M, Liu M, Wu Z. Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis. Sci Rep. 2016;6:33777.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. In: Int J Mol Sci vol 14; 2013: 9643–9684.
Liu H, Ouyang B, Zhang J, Wang T, Li H, Zhang Y, Yu C, Ye Z. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One. 2012;7(11):e50785.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002;14(8):1675–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desikan R, Soheila AHM, Hancock JT, Neill SJ. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 2001;127(1):159–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, et al. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci U S A. 2003;100(26):16113–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volkov RA, Panchuk II, Mullineaux PM, Schöffl F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol. 2006;61(4):733–46.
Article
CAS
PubMed
Google Scholar
Cao X, Jiang F, Wang X, Zang Y, Wu Z. Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. Euphytica. 2015;205(2):569–84.
Article
CAS
Google Scholar
Foolad MR, Lin GY. Relationship between cold tolerance during seed germination and vegetative growth in tomato: germplasm evaluation. Journal of the American Society for Horticultural Science American Society for Horticultural Science. 2000;125(6):679–83.
Article
Google Scholar
Venema JH, Linger P, van Heusden AW, van Hasselt PR, Bruggemann W: The inheritance of chilling tolerance in tomato (Lycopersicon spp.). Plant biology (Stuttgart, Germany) 2005, 7(2):118–130.
Cao X, Wu Z, Jiang F, Zhou R, Yang Z. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics. 2014;15(1):1130.
Article
PubMed
PubMed Central
CAS
Google Scholar
Valiollahi E, Farsi M, Kakhki AM. Sly-miR166 and sly-miR319 are components of the cold stress response in Solanum lycopersicum. Plant Biotechnology Reports. 2014;8(4):349–56.
Article
Google Scholar
Kondhare KR, Malankar NN, Devani RS, Banerjee AK. Genome-wide transcriptome analysis reveals small RNA profiles involved in early stages of stolon-to-tuber transitions in potato under photoperiodic conditions. BMC Plant Biol. 2018;18:284.
Article
PubMed
PubMed Central
Google Scholar
Kozomara A. Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(D1):D68–73.
Article
CAS
PubMed
Google Scholar
Dai X, Zhao PX: psRNATarget: a plant small RNA target analysis server. Nucleic acids research 2011, 39(Web Server issue):W155–159.
Trémousaygue D, Garnier L, Bardet C, Dabos P, Hervé C, Lescure B. Internal telomeric repeats and 'TCP domain' protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J. 2003;33(6):957–66.
Article
PubMed
Google Scholar
Barrero-Gil J, Huertas R, Rambla JL, Granell A, Salinas J. Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant Cell Environ. 2016;39(10):2303–18.
Article
CAS
PubMed
Google Scholar
Davletova S, Schlauch K, Coutu J, Mittler R. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 2005;139(2):847–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett. 2006;580(28–29):6537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 2004;39(6):905–19.
Article
CAS
PubMed
Google Scholar
Zhang YJ, Yang JS, Guo SJ, Meng JJ, Zhang YL, Wan SB, He QW, Li XG. Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. Plant Biol. 2011;13(2):362–7.
Article
CAS
PubMed
Google Scholar
Ebrahimi M, Abdullah SNA, Abdul Aziz M, Namasivayam P. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway. J Plant Physiol. 2016;202:107–20.
Article
CAS
PubMed
Google Scholar
Cruz-Mendívil A, López-Valenzuela JA, Calderón-Vázquez CL, Vega-García MO, Reyes-Moreno C, Valdez-Ortiz A. Transcriptional changes associated with chilling tolerance and susceptibility in ‘micro-tom’ tomato fruit using RNA-Seq. Postharvest Biol Technol. 2015;99:141–51.
Article
CAS
Google Scholar
Chen Y, Chen Z, Kang J, Kang D, Gu H, Qin G. AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol Biol Report. 2013;31(1):87–97.
Article
CAS
PubMed
Google Scholar
Zhao D, Shen L, Fan B, Yu M, Zheng Y, Lv S, Sheng J. Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits. FEBS Lett. 2009;583(20):3329–34.
Article
CAS
PubMed
Google Scholar
Ding Y, Zhao J, Nie Y, Fan B, Wu S, Zhang Y, Sheng J, Shen L, Zhao R, Tang X. Salicylic-acid-induced chilling- and oxidative-stress tolerance in relation to gibberellin homeostasis, C-repeat/dehydration-responsive element binding factor pathway, and antioxidant enzyme Systems in Cold-Stored Tomato Fruit. J Agric Food Chem. 2016;64(43):8200–6.
Article
CAS
PubMed
Google Scholar
Wang L, Zhao R, Zheng Y, Chen L, Li R, Ma J, Hong X, Ma P, Sheng J, Shen L. SlMAPK1/2/3 and antioxidant enzymes are associated with H2O2-induced chilling tolerance in tomato plants. J Agric Food Chem. 2017;65(32):6812–20.
Article
CAS
PubMed
Google Scholar
Zhang X, Sheng J, Li F, Meng D, Shen L. Methyl jasmonate alters arginine catabolism and improves postharvest chilling tolerance in cherry tomato fruit. Postharvest Biol Technol. 2012;64(1):160–7.
Article
CAS
Google Scholar
Ding Y, Sheng J, Li S, Nie Y, Zhao J, Zhu Z, Wang Z, Tang X. The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol. 2015;101:88–95.
Article
CAS
Google Scholar
Hu T, Wang Y, Wang Q, Dang N, Wang L, Liu C, Zhu J, Zhan X. The tomato 2-oxoglutarate-dependent dioxygenase gene SlF3HL is critical for chilling stress tolerance. Horticulture Research. 2019;6(1):45.
Article
PubMed
PubMed Central
Google Scholar
Hsieh T-H, Lee J-T, Yang P-T, Chiu L-H, Charng Y-y, Wang Y-C, Chan M-T: Heterology Expression of the Arabidopsis<em>C-Repeat/Dehydration Response Element Binding Factor 1</em> Gene Confers Elevated Tolerance to Chilling and Oxidative Stresses in Transgenic Tomato. Plant Physiol 2002, 129(3):1086.
Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim J-M, Seki M, Todaka D, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Gen Genomics. 2011;286(5):321–32.
Article
CAS
Google Scholar
Suzuki N, Mittler R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant. 2006;126(1):45–51.
Article
CAS
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9(10):490–8.
Article
CAS
PubMed
Google Scholar
Torres MA, Dangl JL. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol. 2005;8(4):397–403.
Article
CAS
PubMed
Google Scholar
Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 2004;41(2):195–211.
Article
CAS
Google Scholar
Pnueli L, Liang H, Rozenberg M, Mittler R. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J. 2003;34(2):187–203.
Article
CAS
PubMed
Google Scholar
Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat JL, Hegie A, Triantaphylides C, Shulaev V, Van Montagu MC, et al. Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci U S A. 2011;108(4):1711–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet. 2007;39(6):787–91.
Article
CAS
PubMed
Google Scholar
Xie Q, Liu X, Zhang Y, Tang J, Yin D, Fan B, Zhu L, Han L, Song G, Li D: Identification and Characterization of microRNA319a and Its Putative Target Gene, PvPCF5, in the Bioenergy Grass Switchgrass (Panicum virgatum). In: Front Plant Sci. vol. 8; 2017: 396.
Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk ADJ, Muino JM, Cutri L, Dornelas MC, et al. Arabidopsis class I and class II TCP transcription factors regulate Jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 2012;159(4):1511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, Angenent GC, de Maagd RA. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol. 2014;14(1):157.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu Z-J, Wang W-L, Zhuang J. TCP family genes control leaf development and its responses to hormonal stimuli in tea plant [Camellia sinensis (L.) O. Kuntze]. Plant Growth Regul. 2017;83(1):43–53.
Article
CAS
Google Scholar
Gong X, Derek Bewley J. A GAMYB-like gene in tomato and its expression during seed germination. Planta. 2008;228(4):563.
Article
CAS
PubMed
Google Scholar
Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA. The MicroRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol. 2010;154(2):757–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu M, Chen G, Dong T, Wang L, Zhang J, Zhao Z, Hu Z. SlDEAD31, a putative DEAD-box RNA helicase gene, regulates salt and drought tolerance and stress-related genes in tomato. PLoS One. 2015;10(8):e0133849.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kant P, Kant S, Gordon M, Shaked R, Barak S. STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol. 2007;145(3):814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JS, Kim KA, Oh TR, Park CM, Kang H. Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol. 2008;49(10):1563–71.
Article
CAS
PubMed
Google Scholar
Li D, Zhang H, Liu H, Wang X, Song F. OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. J Exp Bot. 2008;59(8):2133–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 1996;85(2):159–70.
Article
CAS
PubMed
Google Scholar
Fillatti JJ, Kiser J, Rose R, Comai L. Efficient transfer of a glyphosate tolerance gene into tomato using a binary agrobacterium Tumefaciens vector. Bio/Technology. 1987;5:726.
CAS
Google Scholar
Rao MV, Davis KR. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J. 2002;17(6):603–14.
Article
Google Scholar
Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol. 2007;65(5):627–44.
Article
CAS
PubMed
Google Scholar
Wang AG, Luo GH. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun. 1990;84(15):2895–8.
Google Scholar
Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 2002;163(3):515–23.
Article
CAS
Google Scholar
Beyer WF, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987;161(2):559–66.
Article
CAS
PubMed
Google Scholar
Li H. Principles and techniques of plant physiological and biochemical experiment. Beijing: Higher Education Press; 2000.
Google Scholar
Jimenez A, Hernandez JA, Del Rio LA, Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 1997;114(1):275–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang F, Hajkova P, Barton SC, Lao K, Surani MA. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 2006;34(2):e9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M, Fan Y, Ma J, Sun W, et al. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res. 2018;46(D1):D1229–36.
Article
CAS
PubMed
Google Scholar
Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 2015;231:198–211.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Liu D, Liu X, Meng Y, Sun C, Tang H, Jiang Y, Khan MA, Xue J, Ma N, Gao J. An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration. J Exp Bot. 2013;64(8):2333–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato. Plant J. 2002;31(6):777–86.
Article
CAS
PubMed
Google Scholar
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–26.
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar