Zimmermann S, Ehrhardt T, Plesch G, Muller-Rober B. Ion channels in plant signaling. Cell Mol Life Sci. 1999;55(2):183–203.
Article
CAS
Google Scholar
Czempinski K, Gaedeke N, Zimmermann S, Muller-Rober B. Molecular mechanisms and regulation of plant ion channels. J Exp Bot. 1999;50:955–66.
Article
CAS
Google Scholar
Blatt MR, Thiel G. Hormonal-control of Ion-Channel gating. Annu Rev Plant Phys. 1993;44:543–67.
Article
CAS
Google Scholar
Tyerman SD. Anion channels in plants. Annu Rev Plant Phys. 1992;43:351–73.
Article
CAS
Google Scholar
Neher E, Sakmann B. The patch clamp technique. Sci Am. 1992;266(3):44–51.
Article
CAS
Google Scholar
Keller BU, Hedrich R, Raschke K. Voltage-dependent anion channels in the plasma-membrane of guard-cells. Nature. 1989;341(6241):450–3.
Article
Google Scholar
Schroeder JI, Hagiwara S. Cytosolic calcium regulates ion channels in the plasma-membrane of Vicia-Faba guard-cells. Nature. 1989;338(6214):427–30.
Article
Google Scholar
Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, et al. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature. 2008;452(7186):487–91.
Article
CAS
Google Scholar
Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature. 2008;452(7186):483–U413.
Article
CAS
Google Scholar
Jaborsky M, Maierhofer T, Olbrich A, Escalante-Perez M, Muller HM, Simon J, Krol E, Cuin TA, Fromm J, Ache P, et al. SLAH3-type anion channel expressed in poplar secretory epithelia operates in calcium kinase CPK-autonomous manner. New Phytol. 2016;210(3):922–33.
Article
CAS
Google Scholar
Sun SJ, Qi GN, Gao QF, Wang HQ, Yao FY, Hussain J, Wang YF. Protein kinase OsSAPK8 functions as an essential activator of S-type anion channel OsSLAC1, which is nitrate-selective in rice. Planta. 2016;243(2):489–500.
Article
CAS
Google Scholar
Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci U S A. 2009;106(50):21425–30.
Article
CAS
Google Scholar
Geiger D, Maierhofer T, AL-Rasheid KAS, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, et al. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal. 2011;4(173):ra32.
Article
Google Scholar
Wang YY, Hsu PK, Tsay YF. Uptake, allocation and signaling of nitrate. Trends Plant Sci. 2012;17(8):458–67.
Article
CAS
Google Scholar
Dreyer I, Gomez-Porras JL, Riano-Pachon DM, Hedrich R, Geiger D. Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs). Front Plant Sci. 2012;3:263.
Article
Google Scholar
Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2002;99(25):16314–8.
Article
CAS
Google Scholar
Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem. 2006;281(8):5310–8.
Article
CAS
Google Scholar
Chen YH, Hu L, Punta M, Bruni R, Hillerich B, Kloss B, Rost B, Love J, Siegelbaum SA, Hendrickson WA. Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature. 2010;467(7319):1074–80.
Article
CAS
Google Scholar
Demir F, Horntrich C, Blachutzik JO, Scherzer S, Reinders Y, Kierszniowska S, Schulze WX, Harms GS, Hedrich R, Geiger D, et al. Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci U S A. 2013;110(20):8296–301.
Article
CAS
Google Scholar
Cubero-Font P, Maierhofer T, Jaslan J, Rosales MA, Espartero J, Diaz-Rueda P, Muller HM, Hurter AL, AL-Rasheid KAS, Marten I, et al. Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation. Curr Biol. 2016;26(16):2213–20.
Article
CAS
Google Scholar
Qiu JE, Henderson SW, Tester M, Roy SJ, Gilliham M. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot cl- accumulation and salt tolerance in Arabidopsis thaliana. J Exp Bot. 2016;67(15):4495–505.
Article
CAS
Google Scholar
Maierhofer T, Lind C, Huttl S, Scherzer S, Papenfuss M, Simon J, Al-Rasheid KA, Ache P, Rennenberg H, Hedrich R, et al. A single-pore residuerenders the Arabidopsis root anion channel SLAH2 highly nitrate selective. Plant Cell. 2014;26(6):2554–67.
Article
CAS
Google Scholar
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. An "electronic fluorescent pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS One. 2007;2(8):e718.
Article
Google Scholar
Gutermuth T, Lassig R, Portes MT, Maierhofer T, Romeis T, Borst JW, Hedrich R, Feijo JA, Konrad KR. Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dependent protein kinases CPK2 and CPK20. Plant Cell. 2013;25(11):4525–43.
Article
CAS
Google Scholar
Zheng XJ, He K, Kleist T, Chen F, Luan S. Anion channel SLAH3 functions in nitrate-dependent alleviation of ammonium toxicity in Arabidopsis. Plant Cell Environ. 2015;38(3):474–86.
Article
CAS
Google Scholar
Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A. Steps towards an integrated view of nitrogen metabolism. J Exp Bot. 2002;53(370):959–70.
Article
CAS
Google Scholar
Wolf-Rüdiger Scheible MS. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 2004;136(1):2483–99.
Article
Google Scholar
Park H, Oh SJ, Han KS, Woo DH, Park H, Mannaioni G, Traynelis SF, Lee CJ. Bestrophin-1 encodes for the Ca2+-activated anion channel in hippocampal astrocytes. J Neurosci. 2009;29(41):13063–73.
Article
CAS
Google Scholar
Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjarvi J, Ghassemian M, Stephan AB, Hu H, Schroeder JI. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci U S A. 2012;109(26):10593–8.
Article
CAS
Google Scholar
Vahisalu T, Puzorjova I, Brosche M, Valk E, Lepiku M, Moldau H, Pechter P, Wang YS, Lindgren O, Salojarvi J, et al. Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J. 2010;62(3):442–53.
Article
CAS
Google Scholar
Imes D, Mumm P, Bohm J, Al-Rasheid KAS, Marten I, Geiger D, Hedrich R. Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J. 2013;74(3):372–82.
Article
CAS
Google Scholar
Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KA, Grill E, et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci U S A. 2010;107(17):8023–8.
Article
CAS
Google Scholar
Chen G. The slow anion channel (SLAC/SLAH) gene family in pear (Pyrus bretschneideri) and comparison with other members of the Rosaceae. Genomics. 2018. https://doi.org/10.1016/j.ygeno.2018.07.004.
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596–9.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods. 2001;25(4):402–8.
Article
CAS
Google Scholar
Xie QG, Wang P, Liu X, Yuan L, Wang LB, Zhang CG, Li Y, Xing HY, Zhi LY, Yue ZL, et al. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell. 2014;26(7):2843–57.
Article
CAS
Google Scholar
Sun L, Song L, Zhang Y, Zheng Z, Liu D. Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiol. 2016;170(1):499.
Article
CAS
Google Scholar
Dong JS, Pineros MA, Li XX, Yang HB, Liu Y, Murphy AS, Kochian LV, Liu D. An Arabidopsis ABC transporter mediates phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in roots. Mol Plant. 2017;10(2):244–59.
Article
CAS
Google Scholar
Xie XB, Zhao J, Hao YJ, Fang CB, Wang Y. The ectopic expression of apple MYB1 and bHLH3 differentially activates anthocyanin biosynthesis in tobacco. Plant Cell Tiss Org. 2017;131(1):183–94.
Article
CAS
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43.
Article
CAS
Google Scholar
Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions β-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO J. 1987;6(13):3901–7.
Article
CAS
Google Scholar
Mei W, Song W, Pan Y, Gong W, Zhu Y. High throughput cloning of Arabidopsis transcription factors using gateway cloning technology. Mol Plant Breed. 2004;2(3):358–64.
CAS
Google Scholar
Cataldo D, Maroon M, Schrader L, Youngs V. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plan. 1975;6(1):71–80.
Article
CAS
Google Scholar
Gilliam JW. Rapid measurement of chlorine in plant materials. Soil Sci Soc Am J. 1971;35(3):512–3.
Article
Google Scholar