Longping Y. Development of hybrid rice to ensure food security. Rice Sci. 2014;21(1):1–2.
Article
Google Scholar
Su N, Hu ML, Wu DX, Wu FQ, Fei GL, Lan Y, Chen XL, Shu XL, Zhang X, Guo XP. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol. 2012;159:227–38.
Article
CAS
Google Scholar
Chen L, Liu YG. Male sterility and fertility restoration in crops. Annu Rev Plant Biol. 2014;65:579–06.
Article
CAS
Google Scholar
Longping Y. Purification and production of foundation seed of rice PGMS and TGMS lines. Hybrid Rice. 1994;6:1–3.
Google Scholar
Yang Q, Liang C, Zhuang W, Li J, Deng H, Deng Q, Wang B. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping. Planta. 2007;225(2):321–30.
Article
CAS
Google Scholar
Huang JZ, ZG E, Zhang HL, Shu QY. Workable male sterility systems for hybrid rice: genetics, biochemistry, molecular biology, and utilization. Rice. 2014;7(1):13.
Article
Google Scholar
Yu J, Han J, Kim YJ, Song M, Yang Z, He Y, Fu R, Luo Z, Hu J, Liang W, Zhang D. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc Natl Acad Sci. 2017;201705189.
Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci. 2012;109(7):2654–9.
Article
CAS
Google Scholar
Luo X, Xia S, Luo S, Lu Z, Zhang Z, Wang G. Breeding of dual purpose genic male sterile lines and their application in two-line super rice. Hybrid Rice. 2010;S1:59–63.
Google Scholar
Song F, Ni J, Qian Y, Li L, Ni D, Yang J. Development of SNP-based dCAPS markers for identifying male sterile gene tms5 in two-line hybrid rice. Genet Mol Res. 2016;15(3):gmr.15038512.
Google Scholar
Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Dong J, Liu Q, Gu L, Zhou L. RNase Z
S1 processes Ub
L40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun. 2014;5:4884.
Article
CAS
Google Scholar
Jia JH, Li CY, Deng QY, Wang B. Rapid constructing a genetic linkage map by AFLP technique and mapping a new gene tms5. Acta Bot Sin. 2003;45(5):614–20.
CAS
Google Scholar
Wang Y, Xing Q, Deng Q, Liang F, Yuan L, Weng M, Wang B. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theor Appl Genet. 2003;107(5):917–21.
Article
CAS
Google Scholar
Zhang H, Chen X, Huang J, Zhi-Guo E, Gong J, Shu Q. Identification and transition analysis of photo−/thermo-sensitive genic male sterile genes in two-line hybrid rice in China. Sci Agr Sin. 2015;48:1–9.
Google Scholar
Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, Zhu L, Ni E, Jiang D, Zhao B, Zhuang C. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated tms5 editing system. Sci Rep. 2016;6:37395.
Article
CAS
Google Scholar
Abdallah NA, Prakash CS, McHughen AG. Genome editing for crop improvement: challenges and opportunities. GM Crops & Food. 2015;6(4):183–05.
Article
Google Scholar
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947–51.
Article
CAS
Google Scholar
Chilcoat D, Liu ZB, Sander J. Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci. 2017;149:27–46.
Article
Google Scholar
Li J, Zhang H, Si X, Tian Y, Chen K, Liu J, Chen H, Gao C. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genetics & Genomics. 2017;44(9):465–8.
Article
Google Scholar
Zhang J, Zhang H, Botella JR, Zhu JK. Generation of new glutinous rice by CRISPR/Cas9 -targeted mutagenesis of the Waxy gene in elite rice varieties. J Inte Plant Biol. 2018;60(5):369–75.
Article
CAS
Google Scholar
Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia LQ. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci. 2017;8:298.
PubMed
PubMed Central
Google Scholar
Shao G, Xie L, Jiao G, Wei X, Sheng Z, Tang S, Hu P. CRISPR/CAS9-mediated editing of the fragrant gene Badh2 in Rice. Chin J Rice Sci. 2017;31(2):216–22.
Google Scholar
Chao S, Cai Y, Feng B, Jiao G, Sheng Z, Luo J, Tang S, Wang J, Wei X, Hu P. Editing of the rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Sci. 2019;26(2):77–87.
Article
Google Scholar
Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. 2016;11(4):e0154027.
Article
Google Scholar
Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia LQ. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mole Plant. 2016;9:628–31.
Article
CAS
Google Scholar
Li J, Zhang X, Sun Y, Zhang J, Du W, Guo X, Li S, Zhao Y, Xia LQ. Efficient allelic replacement in rice by gene editing: a case study of the NRT1.1B gene. J Inte Plant Biol. 2018;60(7):536–40.
Article
CAS
Google Scholar
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant. 2015;8(8):1274–84.
Article
CAS
Google Scholar
Lowder LG, Paul JW, Baltes NJ, Voytas DF, Zhang Y, Zhang D, Tang X, Zheng X, Hsieh TF, Qi Y. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 2015;169(2):971–85.
Article
Google Scholar
Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J. 2014;12(6):797–07.
Article
CAS
Google Scholar
Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 2015;58(4):575–85.
Article
CAS
Google Scholar
Waltz E. With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol. 2018;36:6–7.
Article
CAS
Google Scholar
Lei D, Tang W, Xie Z, Liu H, Chen L. Solutions to insecurity problems in seed production of two-line hybrid rice. Agr Sci Technol. 2014;15(7):1160–6.
Google Scholar
Cao L, Zhan X. Chinese experiences in breeding three-line, two-line and super hybrid rice. In: InTech; 2014. p. 279–08.
Google Scholar
Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994;6(2):271–82.
Article
CAS
Google Scholar
Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant Mol Biol Rep. 1983;1(4):19–21.
Article
CAS
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.
Article
CAS
Google Scholar
Li X, Bai H, Wang X, Li L, Cao Y, Wei J, Liu Y, Liu L, Gong X, Wu L, Liu S, Liu G. Identification and validation of rice reference proteins for Western blotting. J Expt Bot. 2011;62(4):4763–72.
Article
CAS
Google Scholar