Cho MJ, Yano H, Okamoto D, Kim HK, Jung HR, Newcomb K, et al. Stable transformation of rice (Oryza sativa L.) via microprojectile bombardment of highly regenerative, green tissues derived from mature seed. Plant Cell Rep. 2004;22(7):483–9.
Article
PubMed
CAS
Google Scholar
Wang K, Frame B. Biolistic gun-mediated maize genetic transformation. Methods Mol Biol. 2009;526:29–45.
Article
PubMed
CAS
Google Scholar
Zhang K, Liu J, Zhang Y, Yang Z, Gao C. Biolistic genetic transformation of a wide range of Chinese elite wheat (Triticum aestivum L.) varieties. J Genet Genomics. 2015;42:39–42.
Article
PubMed
Google Scholar
Vasil V, Castillo AM, Fromm ME, Vasil IK. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technol. 1992;10:667–74.
CAS
Google Scholar
Vasil V, Srivastava V, Castillo AM, Fromm ME, Vasil IK. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technol. 1993;11:1553–8.
Google Scholar
Weeks JT, Anderson OD, Blechl AE. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum L.). Plant Physiol. 1993;102:1077–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, et al. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 1994;5:285–97.
Article
CAS
Google Scholar
Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, et al. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 1995;15:159–63.
Article
PubMed
CAS
Google Scholar
Altpeter F, Vasil V, Srivastava V, Stoger E, Vasil IK. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 1996;16:12–7.
Article
PubMed
CAS
Google Scholar
Ortiz JPA, Reggiardo MI, Ravizzini RA, Altabe SG, Cervigni GDL, Spitteler MA, et al. Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep. 1996;15:877–81.
Article
PubMed
CAS
Google Scholar
Takumi S, Shimada T. Production of transgenic wheat through particle bombardment of scutellar tissues: frequency is influenced by culture duration. J Plant Physiol. 1996;149:418–23.
Article
CAS
Google Scholar
Barro F, Cannell ME, Lazzeri PA, Barcelo P. The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theor Appl Genet. 1998;97:684–95.
Article
CAS
Google Scholar
Yao Q, Cong L, Chang JL, Li KX, Yang GX, He GY. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp Bot. 2006;57:3737–46.
Article
PubMed
CAS
Google Scholar
Kovalchuk N, Smith J, Pallotta M, Singh R, Ismagul A, Eliby S, et al. Characterization of the wheat endosperm transfer cell-specific protein TaPR60. Plant Mol Biol. 2009;71:81–98.
Article
PubMed
CAS
Google Scholar
Ismagul A, Iskakova G, Harris JC, Eliby S. Biolistic transformation of wheat with centrophenoxine as a synthetic auxin. In: Fleury D, Whitford R, editors. Crop breeding: methods and protocols, methods in molecular biology, vol. 1145. New York: Humana Press; 2014. p. 191–202.
Chapter
Google Scholar
Sanford JC, Smith FD, Russel JA. Optimizing the biolistic process for different biological applications. Methods Enzymol. 1993;217:483–509.
Article
PubMed
CAS
Google Scholar
Kikkert JR. Biolistic transformation of plant cells. In: Celis JE, editor. Cell biology: a laboratory handbook, vol. 4. San Diego: Academic Press; 1998. p. 157–61.
Google Scholar
Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri PA. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep. 1999;19:118–27.
Article
CAS
Google Scholar
Kohli A, Gahakwa D, Vain P, Laurie DA, Christou P. Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta. 1999;208:88–97.
Article
CAS
Google Scholar
Sparks CA, Jones HD. Transformation of wheat by biolistics. In: Curtis IP, editor. Transgenic crops of the world – Essential Protocols. Dordrecht: Kluwer; 2004. p. 19–35.
Chapter
Google Scholar
Srivastava V, Vasil V, Vasil IK. Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.). Theor Appl Genet. 1996;92:1031–7.
Article
PubMed
CAS
Google Scholar
Stoger E, Williams S, Keen D, Christou P. Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgenic Res. 1998;7:463–71.
Article
CAS
Google Scholar
Agrawal PK, Kohli A, Twyman RM, Christou P. Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breed. 2005;16:247–60.
Article
CAS
Google Scholar
Jones HD. Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci. 2005;41:137–47.
Article
CAS
Google Scholar
Fu XD, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, et al. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 2000;9:11–9.
Article
PubMed
CAS
Google Scholar
Lowe BA, Prakash NS, Way M, Mann MT, Spencer TM, Boddupalli RS. Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res. 2009;18:831–40.
Article
PubMed
CAS
Google Scholar
O'Kennedy MM, Stark HC, Dube N. Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue. Methods Mol Biol. 2011;710:343–54.
Article
PubMed
CAS
Google Scholar
Jackson MA, Anderson DJ, Birch RG. Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res. 2013;22(1):143–51.
Article
PubMed
CAS
Google Scholar
Wu H, Awan FS, Vilarinho A, Zeng Q, Kannan B, Phipps T, et al. Transgene integration complexity and expression stability following biolistic or Agrobacterium-mediated transformation of sugarcane. In Vitro Cell Devel Biol Plant. 2015;51:603–11.
Article
CAS
Google Scholar
Murashige T. Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Shimada T, Sasakuma T, Tsunewaki K. In vitro culture of wheat tissues. I. Callus formation, organ redifferention and single cell culture. Can J Genet Cytol. 1969;11:294–304.
Article
CAS
Google Scholar
Christensen AH, Quail PH. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 1996;5:213–8.
Article
PubMed
CAS
Google Scholar
Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep. 1987;5(4):387–405.
Article
CAS
Google Scholar
Eini O, Yang N, Pyvovarenko T, Pillman K, Bazanova N, Tikhomirov N, et al. Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat. PLoS One. 2013;8:e58713.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kikkert JR, Vidal JR, Reisch BI. Stable transformation of plant cell by particle bombardment/biolistics. In: Peña L, editor. Transgenic plants: methods and protocols. Totowa: Humana Press; 2004. p. 61–78.
Chapter
Google Scholar
Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M, et al. HvNax3 – a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genomics. 2010;10:277–91.
Article
PubMed
CAS
Google Scholar
Pallotta MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ. RFLP mapping of manganese efficiency in barley. Theor Appl Genet. 2000;101:1100–8.
Article
CAS
Google Scholar
Fletcher SJ. qPCR for quantification of transgene expression and determination of transgene copy number. In: Fleury D, Whitford R, editors. Crop breeding: methods and protocols, methods in molecular biology, vol. 1145. New York: Humana Press; 2014. p. 213–38.
Chapter
Google Scholar
Maas C, Werr W. Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep. 1989;8:148–51.
Article
PubMed
CAS
Google Scholar
Paithankar KR, Prasad KSN. Precipitation of DNA by polyethylene glycol and ethanol. Nucleic Acids Res. 1991;19:1346.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eliby S, Kandzia R, Ismagul A, Karabaev M, Sasakuma T, Klimyuk V. Biolistic transformation of wheat utilizing a new DNA/gold coating procedure. Budapest, Hungary: Abstracts of the 6th International Wheat Conference; 2000. p. 313.
Google Scholar
Yao Q, Cong L, He G, Chang J, Li K, Yang G. Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep. 2007;34:61–7.
Article
PubMed
CAS
Google Scholar
Abdul R, Ma Z, Wang H. Genetic transformation of wheat (Titicum aestivum L.), a review. Triticeae Genomics Genet. 2010;1:1–7.
Google Scholar
Tassy C, Partier A, Beckert M, Feuillet C, Barret P. Biolistic transformation of wheat: increased production of plants with single insertions and heritable transgene expression. Plant Cell Tissue Organ Cult. 2014;119:171–81.
Article
CAS
Google Scholar
Prakash NS, Bhojaraja R, Shivbachan SK, Hari Priya GG, Nagraj TK, Prasad V, et al. Marker-free transgenic corn plant production through co-bombardment. Plant Cell Rep. 2009;28:1655–68.
Article
CAS
Google Scholar
Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, et al. Advancing crop transformation in the era of genome editing. Plant Cell. 2016;28:1510–20.
PubMed
PubMed Central
CAS
Google Scholar