de Klerk GJ, Ter Bruge J, Marinova S. Review the formation of adventitious roots: New concepts, new possibilities. In Vitro Cell Dev-Pl. 1999;35:189–99.
Article
Google Scholar
Pagnussat CG, Lanteri ML, Lombardo MC, Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 2004;135:279–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao WB, Xiao HL. Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold. J Hortic Sci and Biotech. 2011;86:159–65.
Article
CAS
Google Scholar
Liao WB, Zhang ML, Huang GB, Yu JH. Ca2+ and CaM are involved in NO-and H2O2-induced adventitious root development in marigold. J Growth Regul. 2012;31:253–64.
Article
CAS
Google Scholar
Lanteri ML, Pagnussat GC, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot. 2006;57:1341–51.
Article
CAS
PubMed
Google Scholar
Pagnussat CG, Lanteri ML, Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. 2003;132:1241–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan R, Wang JX, Tian XS. Influence of ethylene on adventitious root formation in mung bean hypocotyls cuttings. Plant Growth Regul. 2002;36:135–9.
Article
CAS
Google Scholar
Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB. The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol. 2008;148:881–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biondi S, Diaz T, Iglesias I, Gamberini G, Bagni N. Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol Plantarum. 1990;78:474–83.
Article
Google Scholar
Liao WB, Xiao HL, Zhang ML. Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold. Acta Physiol Plant. 2009;31:1279–89.
Article
CAS
Google Scholar
Lin YT, Li MY, Cui WL, Lu W, Shen WB. Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation. J Plant Growth Regul. 2012;31:519–28.
Article
CAS
Google Scholar
Lin YT, Zhang W, Qi F, Cui WT, Xie YJ, Shen WB. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J Plant Physiol. 2014;171:1–8.
Article
CAS
PubMed
Google Scholar
Cantrel C, Vazquez T, Puyaubert, Reze N, Lesch M, Kaiser W, Dutillcul C, Guillas I, Zachowski A, Baudouin E. Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol. 2011;189:415–27.
Article
CAS
PubMed
Google Scholar
Camejo D, Romero-Puertas Mdel C, Rodriguez-Serrano M, Sandalio LM, Lazaro JJ, Jimenez A, Sevilla F. Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteomics. 2013;79:87–99.
Article
CAS
PubMed
Google Scholar
Guo FQ, Crawford NM. Arabidopsis nitric oxide synthasel is trageted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell. 2005;17:3436–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao WB, Zhang ML, Yu JH. Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene. Sci Hortic. 2013;155:30–8.
Article
CAS
Google Scholar
Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol. 2007;143:1173–788.
Article
CAS
PubMed
PubMed Central
Google Scholar
Libourel IG, Bethke PC, De Michele R, Jones RL. Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta. 2006;223:813–20.
Article
CAS
PubMed
Google Scholar
He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei Z. Nitric oxide represses the Arabidopsis floral transition. Science. 2004;205:1968–71.
Article
Google Scholar
Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science. 2003;302:100–3.
Article
CAS
PubMed
Google Scholar
Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a cnetral role in determining lateral root development in tomato. Planta. 2004;218:900–5.
Article
CAS
PubMed
Google Scholar
Lombardo MC, Graziano M, Polacco JC, Lamattina L. Nitric oxide functions as a positive regulator of root hair development. Plant Signa Behav. 2006;1:28–33.
Article
Google Scholar
Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiol. 2002;129:954–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science. 1975;190:152–4.
Article
CAS
PubMed
Google Scholar
Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Kastsura K, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688–94.
Article
CAS
PubMed
Google Scholar
Zheng XF, Sun XJ, Xia ZF. Hydrogen resuscitation, a new cytoprotective approach. Clin ExpPharmacol P. 2011;38:155–63.
CAS
Google Scholar
Xie YJ, Mao Y, Lai D, Zhang W, Shen WB. H2 enhances Arabidopisis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. Plos One. 2012. 10. 1371/journal. pone. 004800.
Xu S, Zhu SS, Jiang YL, Wang N, Wang R, Shen WB, Yang J. Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil. 2013;370:47–57.
Article
CAS
Google Scholar
Zeng JQ, Zhang MY, Sun XJ. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. Plos One. 2013. doi:10.1371/journal.pone.0071038.
Google Scholar
Jin QJ, Zhu KK, Cui WT, Xie YJ, Han B, Shen WB. Hydrogen gas acts as a novel bioavitve molecule in enhacning plant tolerance to paraquat-induced oxidative stress via the modulating of heme oxygenase-1 signaling system. Plant Cell Environ. 2013;36:956–69.
Article
CAS
PubMed
Google Scholar
Cui WT, Gao CY, Fang P, Lin GQ, Shen WB. Alleviation of cadmium toxicity in medicago sativa by hydrogen-rich water. J Hazard Mater. 2013;260:715–24.
Article
CAS
PubMed
Google Scholar
Chen M, Cui W, Xie Y, Zhang C, Shen W. Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J Hazard Mater. 2013;267:40–7.
Article
PubMed
Google Scholar
Cui WT, Fang P, Zhu KK, Mao Y, Gao CY, Xie YJ, Wang J, Shen WB. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedings. Ecotox Environ Safe. 2014;105:103–11.
Article
CAS
Google Scholar
Su NN, Wu Q, Liu YY, Cai JT, Shen WB, Xia K, Cui J. Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation. J Agr Food Chem. 2014;62:6454–62.
Article
CAS
Google Scholar
Hu HL, Li PX, Wang YN, Gu RX. Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem. 2014;156:100-–9. doi:10.1016/j.foodchem.2014.01.067.
Article
CAS
PubMed
Google Scholar
Itoh T, Hamada N, Terazawa R, Ito M, Ohno K, Ichihara M, Nozawa Y, Ito M. Molecular hydrogen inhibits lipopolysaccharide/interferon γ-induced nitric oxide production through modulation of signal transduction in macrophages. Biochem Bioph Res Co. 2011;411:143–9.
Article
CAS
Google Scholar
Xie YJ, Mao Y, Zhang W, Lai DW, Wang QY, Shen WB. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol. 2014. doi:10.1104/pp.114.237925.
Google Scholar
Inzé D, De Veylder L. Cell cycle regulation in plant development. Ann Rev Genet. 2006;40:77–105.
Article
PubMed
Google Scholar
Boniotti MB, Gutierrez C. A cell-cycle regulated kinase activity phsphorylates plant retinoblastoma protein and contains, in Arabidopsis, a CDKA/cyclin D complex. Plant J. 2001;28:341–50.
Article
CAS
PubMed
Google Scholar
Joubès J, Chevalier C, Dudits D, Heberle-Bors E, Inzé D, Umeda M, Renaudin JP. CDK-related protein kinases in plants. Plant Mol Biol. 2000;43:607–20.
Article
PubMed
Google Scholar
De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M, Inzé D. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell. 2001;13:1653–67.
Article
PubMed
PubMed Central
Google Scholar
Tewari RK, Hahn EJ, Paek KY. Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep. 2008;27(3):563–73.
Article
CAS
PubMed
Google Scholar
Kashiwagi T, Yan HX, Hamasaki T, Kinjo T, Nakamichi N, Teruya K, Kabayama S, Shirahata S. Electrochemically reduced water protects neural cells from oxidative damage. Oxid Med and Cell Longev. 2014. doi:10.1155/2014/869121.
Google Scholar
Himanen K, Boucheron E, Vanneste S, de Almeida EJ, Inzé D, Beeckman T. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell. 2002;14:2339–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorbiecke R, Sauter M. Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol. 1999;119:21–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beeckman T, Burssens S, Inzé D. The peri-cell-cycle in Arabidopsis. J Exp Bot. 2001;52:403–11.
Article
CAS
PubMed
Google Scholar
Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L. Nitric oxide modulates the expression of cell cycle regualtory genes during lateral root formation in tomato. J Exp Bot. 2006;3:581–8.
Article
Google Scholar
Casimiro I, Marchant A, Bhalerao BP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, and Bennett M. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 2001;13:483–852.
Article
Google Scholar
Sauter M, Mekhedov SL, Kende H. Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant J. 1995;7:622–32.
Article
Google Scholar
Otvos K, Pasternak TP, Miskolczi P, Domoki M, Dorjotov D, Szucs A, Bottka S, Dudits D, Feher A. Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. Plant J. 2005;43:849–60.
Article
CAS
PubMed
Google Scholar
Boudolf V, Rombatus S, Naudts M, Inzé D, De Veylder L. Identification of novel cyclin-dependent kinases interacting with the CKS1 protein of Arabisopsis. J Exp Bot. 2001;52:1381–2.
Article
CAS
PubMed
Google Scholar
Bai XG, Todd CD, Desikan R, Yang YP, Hu XY. N-3-oxo-decanoyl-L-homoserinelactone activates auxin-induced adventitious root formation via hydrogen peroxide-and nitric oxide-dependent cyclin GMP signaling in mung bean. Plant Physiol. 2012;158:725–36.
Article
CAS
PubMed
Google Scholar
Gasparri F, Cappella P, Galvanl A. Multiparametric cell cycle analysis by automated microscopy. J Biomol Screen. 2006;11:586–98.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 2−ΔΔC
T method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar