Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science. 2006;311:1936–9.
Article
CAS
PubMed
Google Scholar
Wan JM, Jiang L, Tang JY, Wang CM, Hou MY, Jing W, Zhang LX. Genetic dissection of the seed dormancy trait in cultivated rice (Oryza sativa L.). Plant Sci. 2005;170:786–92.
Article
CAS
Google Scholar
Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature. 1997;386:485–8.
Article
CAS
PubMed
Google Scholar
Blumler M. Modelling the origins of legume domestication and cultivation. Economic Bot. 1991;45:243–50.
Article
Google Scholar
Plitman U, Kislev M. Reproductive changes induced by domestication. In: Stirton C, Zarucchi J, editors. Advances in legume biology. St. Louis: Missouri Botanical Garden; 1989. p. 487–503.
Google Scholar
Applequist WL, Cronn R, Wendel JF. Comparative development of fiber in wild and cultivated cotton. Evol Devel. 2001;3:3–17.
Article
CAS
Google Scholar
Jiang C, Wright R, El-Zik K, Paterson A. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA. 1998;95:4419–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith CW, Cothren JT: Cotton: Origin, History, Technology, and Production. John Wiley & Sons, Inc., New York 1999.
MacArthur JW, Butler L. Size inheritance and geometric growth processes in the tomato fruit. Genetics. 1938;23:253–68.
CAS
PubMed
PubMed Central
Google Scholar
Ugent D. The Potato. Science. 1970;170:1161–6.
Article
CAS
PubMed
Google Scholar
Lu L, Yan W, Xue W, Shao D, Xing Y. Evolution and association analysis of Ghd7 in rice. PLoS ONE. 2012;7:e34021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doebley J. The genetics of maize evolution. Ann Rev Genet. 2004;38:37–59.
Article
CAS
PubMed
Google Scholar
Wang R, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication. Nature. 1999;398:236–69.
Article
CAS
PubMed
Google Scholar
Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A et al. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA. 2007;104(4):1424–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML. Parallel domestication of the Shattering1 genes in cereals. Nat Genet. 2012;44:720–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blackman B, Strasburg J, Raduski A, Michaels S, Rieseberg L. The role of recently derived FT paralogs in sunflower domestication. Curr Biol. 2010;20:629–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaudhary B, Hovav R, Rapp R, Verma N, Udall J, Wendel J. Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol Devel. 2008;10:567–82.
Article
CAS
Google Scholar
Chaudhary B, Hovav R, Flagel L, Mittler R, Wendel J. Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium). BMC Genomics. 2009;10:378.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bao Y, Hu G, Flagel L, Salmon A, Bezanilla M, Paterson A, Wang Z, Wendel J. Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc Natl Acad Sci USA. 2011;108:21152–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christensen H, Ramachandran S, Tan C, Surana U, Dong C, Chua N. Arabidopsis profilins are functionally similar to yeast profilins: identification of a vascular bundle-specific profilin and a pollen-specific profilin. Plant J. 1996;10:269–79.
Article
CAS
PubMed
Google Scholar
Kovar DR, Drobak BK, Staiger CJ. Maize profilin isoforms are functionally distinct. Plant Cell. 2000;12:583–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staiger CJ, Gibbon BC, Kovar DR, Zonia LE. Profilin and actin depolymerizing factor: Modulators of actin organization in plants. Trends Plant Sci. 1997;2:275–81.
Article
Google Scholar
Staiger CJ, Goodbody KC, Hussey PJ, Valenta R, Drobak BK, Lloyd CW. The profilin multigene family of maize: differential expression of three isoforms. Plant J. 1993;4:631–41.
Article
CAS
PubMed
Google Scholar
Huang SR, McDowell JM, Weise MJ, Meagher RB. The Arabidopsis profilin gene family. Evidence for an ancient split between constitutive and pollen-specific profilin genes. Plant Physiol. 1996;111:115–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kandasamy MK, McKinney EC, Meagher RB. Plant profilin isovariants are distinctly regulated in vegetative and reproductive tissues. Cell Motil Cytoskeleton. 2002;52:22–32.
Article
CAS
PubMed
Google Scholar
Mittermann I, Heiss S, Kraft D, Valenta R, Heberle-Bors E. Molecular characterization of profilin isoforms from tobacco (Nicotiana tabacum) pollen. Sexual Plant Reprod. 1996;9(3):133–9.
Article
Google Scholar
Schütz I, Gus-Mayer S, Schmelzer E. Profilin and Rop GTPases are localized at infection sites of plant cells. Protoplasma. 2006;227(2-4):229–35.
Article
PubMed
CAS
Google Scholar
Magdolen V, Drubin DG, Mages G, Bandlow W. High levels of profilin suppress the lethality caused by overproduction of actin in yeast cells. FEBS Lett. 1993;316:41–7.
Article
CAS
PubMed
Google Scholar
Magdolen V, Oechsner U, Müller G, Bandlow W. The intron-containing gene for yeast profilin (PFY) encodes a vital function. Mol Cell Biol. 1988;8:5108–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pantaloni D, Carlier M-F. How profilin promotes actin filament assembly in the presence of thymosin β4. Cell. 1993;75:1007–14.
Article
CAS
PubMed
Google Scholar
Baum B, Perrimon N. Spatial control of the actin cytoskeleton in Drosophila epithelial cells. Nat Cell Biol. 2001;3(10):883–90.
Article
CAS
PubMed
Google Scholar
Verheyen EM, Cooley L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development. 1994;120:717–28.
CAS
PubMed
Google Scholar
Yu LX, Nasrallah J, Valenta R, Parthasarathy MV. Molecular cloning and mRNA localization of tomato pollen profilin. Plant Mol Bio. 1998;36:699–707.
Article
CAS
Google Scholar
Vidali L, Perez HE, Valdes Lopez V, Noguez R, Zamudio F, Sanchez F. Purification, characterization, and cDNA cloning of profilin from Phaseolus vulgaris. Plant Physiol. 1995;108:115–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramachandran S, Christensen HE, Ishimaru Y, Dong CH, Chao-Ming W, Cleary AL, Chua NH. Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol. 2000;124:1637–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlsson L, Nystrom LE, Sundkvist I, Markey F, Lindberg U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol. 1977;115(3):465–83.
Article
CAS
PubMed
Google Scholar
Schlüter K, Jockusch BM, Rothkegel M. Profilins as regulators of actin dynamics. Biochim Biophys Acta. 1997;1359:97–109.
Article
PubMed
Google Scholar
Mullins RD, Heuser JA, Pollard TD. The interaction of Arp2/3 complex with actin:nucleation, high affinity pointed end capping, and formation of branching networks of filaments. ProcNatl Acad Sci USA. 1998;95:6181–6.
Article
CAS
Google Scholar
Alvarez-Martinez MT, Mani JC, Porte F, Faivre-Sarrailh C, Liautard JP, Sri Widada J. Characterization of the interaction between annexin I and profilin. Eur J Biochem. 1996;238:777–84.
Article
CAS
PubMed
Google Scholar
Mahoney NM, Rozwarski DA, Fedorov E, Fedorov AA, Almo SC. Profilin binds proline-rich ligands in two distinct amide backbone orientations. Nat Struct Biol. 1999;6:666–71.
Article
CAS
PubMed
Google Scholar
Sohn RH, Goldschmidt-Clermont PJ. Profilin: At the crossroads of signal transduction and the actin cytoskeleton. BioEssays. 1994;16:465–72.
Article
CAS
PubMed
Google Scholar
Chen Z, Ye M, Su X, Liao W, Ma H, Gao K, Lei B, An X. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar. Transgenic Res. 2015;24:705–15.
Article
CAS
PubMed
Google Scholar
Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. The Plant Cell. 2010;22:2156–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Liang H, Pang J, Zhu M. Regulation Network and Biological Roles of LEAFY in Arabidopsis thaliana in Floral Development. Hereditas. 2004;26(1):137–42.
CAS
PubMed
Google Scholar
Immink RGH, Posé D, Ferrario S, Ott F, Kaufmann K, Valentim FL, de Folter S, Van der Wal F, Dijk ADJ, Schmid M et al. Characterization of SOC1’s central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol. 2012;160:433–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot. 2010;61:2247–54.
Article
CAS
PubMed
Google Scholar
Laurie RE, Diwadkar P, Jaudal M, Zhang L, Hecht V, Wen J, Tadege M, Mysore KS, Putterill J, Weller JL et al. The Medicago truncatula FLOWERING LOCUS T homologue, MtFTa1, is a key regulator of flowering time. Plant Physiol. 2011;156:2207–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Y-L, Todesco M, Hagmann J, Das S, Weigel D. Independent FLC mutations as causes of flowering-time variation in Arabidopsis thaliana and Capsella rubella. Genetics. 2012;192:729–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science. 2005;309:1052–6.
Article
CAS
PubMed
Google Scholar
Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science. 2005;309:1694–6.
Article
CAS
PubMed
Google Scholar
Jeong JH, Song HR, Ko JH, Jeong YM, Kwon YE, Seol JH, Amasino RM, Noh B, Noh YS. Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One. 2009;4:379–84.
Article
Google Scholar
Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of fowering. Plant Cell. 1999;11:949–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM, Noh YS. Divergent roles of a pair of homologous Jumonji/Zinc-Finger–class transcription factor proteins in the regulation of Arabidopsis flowering time. The Plant Cell. 2004;16:2601–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chua NH, Ramachandran S, Christensen HEM. Alteration of plant morphology by control of profilin expression. In: Google Patents. 2002.
Google Scholar
Haarer B, Lillie S, Adams A, Magdolen V, Bandlow W, Brown SS. Purification of profilin from Saccharomyces cerevisiae and analysis of profilin-deficient cells. J Cell Biol. 1990;110:105–14.
Article
CAS
PubMed
Google Scholar
Wang HY, Yu Y, Chen ZL, Xia GX. Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells. Characterization of in vivo functions of a cotton profilin gene. Planta. 2005;222:594–603.
Article
CAS
PubMed
Google Scholar
Wang J, Wang H, Zhao P, Han L, Jiao G, Zheng Y, Huang S, Xia G. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol. 2010;51:1276–90.
Article
CAS
PubMed
Google Scholar
McKinney EC, Kandasamy MK, Meagher RB. Small changes in the regulation of one Arabidopsis profilin isovariant, PRF1, alter seedling development. Plant Cell. 2001;13:1179–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müssar KJ, Kandasamy MK, McKinney EC, Meagher RB. Arabidopsis plants deficient in constitutive class profilins reveal independent and quantitative genetic effects. BMC Plant Biology. 2015;15:177.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature. 2014;517(7536):571–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kay R, Chan A, Daly M, McPherson J. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science. 1987;230:1299–302.
Article
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bio-assay with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Pandey DK, Singh A, Chaudhary B. Boron-mediated plant somatic embryogenesis: A provocative model. J Bot. 2012;2012:9.
Google Scholar
Wesley S, Helliwell C, Smith N, Wang M, Rouse D, Liu Q, Gooding P, Singh S, Abbott D, Stoutjesdijk P et al. Construct design for efficient, effective and high throughput gene silencing in plants. Plant J. 2001;27:581–90.
Article
CAS
PubMed
Google Scholar
Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev. 2011;25:2025–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucl Acids Res. 2015;43(Database issue):D447–52.
Article
PubMed
PubMed Central
Google Scholar
Harig L, Beinecke FA, Oltmanns J, Muth J, Müller O, Rüping B, Twyman RM, Fischer R, Prüfer D, Noll GA. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J. 2012;72:908–21.
Article
CAS
PubMed
Google Scholar
Adhikari KN, Campbell CG. In vitro germination and viability of buckwheat (Fagopyrum esculentum Moench) pollen. Euphytica. 1998;102(1):87–92.
Article
Google Scholar
Hoffman AA, Hercus MJ. Environmental stress as an evolutionary force. BioScience. 2000;50:217–26.
Article
Google Scholar
Muller R, Borghi L, Kwiatkowska D, Laufs P, Simon R. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell. 2006;18:1188–98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bubb MR, Yarmola EG, Gibson BG, Southwick FS. Depolymerization of actin filaments by profilin effects of profilin on capping protein function. J Biol Chem. 2003;278:24629–35.
Article
CAS
PubMed
Google Scholar
Pring M, Weber A, Bubb MR. Profilin-actin complexes directly elongate actin filaments at the barbed end. Biochemistry. 1992;31(6):1827–36.
Article
CAS
PubMed
Google Scholar
Weigel D, Alvarez J, Smyth D, Yanofsky M, Meyerowitz E. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992;69:843–59.
Article
CAS
PubMed
Google Scholar
Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995;377:495–500.
Article
CAS
PubMed
Google Scholar
Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De RR, Rakusova H, et al. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science. 2014;343:1025–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell. 1999;11:393–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark SE, Williams RW, Meyerowitz EM. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell. 1997;89(4):575–85.
Article
CAS
PubMed
Google Scholar
Moon J, Suh S-S, Lee H, Choi K-R, Hong CB, Paek N-C, Kim S-G, Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 2003;35:613–23.
Article
CAS
PubMed
Google Scholar
Amasino RM, Michaels SD. The timing of flowering. Plant Physiol. 2010;154(2):516–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blázquez MA, Soowal LN, Lee I, Weigel D. LEAFY expression and flower initiation in Arabidopsis. Dev Camb Engl. 1997;124:3835–44.
Google Scholar
Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science. 2005;309:1056.
Article
CAS
PubMed
Google Scholar
Walter A, Silk WK, Schurr U. Environmental effects on spatial and temporal patterns of leaf and root growth. Ann Rev Plant Biol. 2009;60:279–304.
Article
CAS
Google Scholar
Gonzalez N, De BS, Sulpice R, Jikumaru Y, Chae E, Dhondt S, Van DT, De ML, Weigel D, Kamiya Y et al. Increased leaf size: different means to an end. Plant Physiol. 2010;153:1261–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eloy NB, de Freitas Lima M, Van Damme D, Vanhaeren H, Gonzalez N, De Milde L, Hemerly AS, Beemster GT, Inzé D, Ferreira PC. The APC/C subunit 10 plays an essential role in cell proliferation during leaf development. Plant J. 2011;68:351–63.
Article
CAS
PubMed
Google Scholar
Feng G, Qin Z, Yan J, Zhang X, Hu Y. Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol. 2011;191:635–46.
Article
CAS
PubMed
Google Scholar
Mei Y, Jia W, Chu Y, Xue H. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res. 2012;22:581–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aloni R, Aloni E, Langhans M, Ullrich CI. Role of auxin in regulating Arabidopsis flower development. Planta. 2006;223(2):315–28.
Article
CAS
PubMed
Google Scholar
Deal RB, Kandasamy MK, McKinney EC, Meagher RB. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. Plant Cell. 2005;17:2633–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin-Trillo M, Lazaro A, Poethig RS, Gomez-Mena C, Pineiro MA, Martinez-Zapater JM, Jarillo JA. EARLY IN SHORT DAYS 1 (ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulates FLC accumulation in Arabidopsis. Development. 2006;133:1241–52.
Article
CAS
PubMed
Google Scholar
Kandasamy MK, Deal RB, McKinney EC, Meagher RB. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J. 2005;41:845–58.
Article
CAS
PubMed
Google Scholar
Choi K, Kim S, Kim SY, Kim M, Hyun Y, Lee H, Choe S, Kim S-G, Michaels S, Lee I. SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis. The Plant Cell. 2005;17(10):2647–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuluev BR, Knyazev AB, Lebedev YP, Postrigan BN, Chemeris AV. Obtaining transgenic tobacco plants expressing conserved regions of the AINTEGUMENTA gene in antisense orientation. Russian J Plant Physiol. 2012;59(3):307–17.
Article
CAS
Google Scholar
Pandey DK, Chaudhary B. Oxidative stress responsive SERK1 gene directs the progression of somatic embryogenesis in cotton (Gossypium hirsutum L. cv. Coker 310). Am J Plant Sci. 2014;5:80–102.
Article
CAS
Google Scholar
Schmidt GW, Delaney SK. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. J Mol Genet Genomics. 2010;283:233–41.
Article
CAS
Google Scholar
Sakamoto T, Kamiya N, Iwahori S, Matsuoka M. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 2001;15:581–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development. 2000;127:3161–72.
CAS
PubMed
Google Scholar
Busch W, Miotk A, Ariel F, Zhao Z, Forner J, Daum G, Suzaki T, Schuster C, Schultheiss S, Leibfried A et al. Transcriptional control of a plant stem cell niche. Dev Cell. 2010;18:849–61.
Article
CAS
PubMed
Google Scholar
Pajoro A, Madrigal P, Muino J, Matus J, Jin J, Mecchia M, Debernardi J, Palatnik J, Balazadeh S, Arif M. Dynamics of chromatin accessibility and gene regulation by MADS domain transcription factors in flower development. Genome Biol. 2014;15:R41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sassi M, Ali O, Boudon F, Cloarec G, Abad U, Cellier C, Chen X, Gilles B, Milani P, Friml J et al. An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr Biol. 2014;24:2335–42.
Article
CAS
PubMed
Google Scholar
Li S, Blanchoin L, Yang Z, Lord EM. The putative Arabidopsis Arp2/3 complex controls leaf cell morphogenesis. Plant Physiol. 2003;132(4):2034–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Mallery EL, Szymanski D. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Frontiers Plant Sci. 2013;4:238.
Google Scholar
Kandasamy MK, McKinney EC, Deal RB, Smith AP, Meagher RB. Arabidopsis actin-related protein ARP5 in multicellular development and DNA repair. Dev Biol. 2009;335(1):22–32.
Article
CAS
PubMed
PubMed Central
Google Scholar