Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle M-A, et al. Cotton fiber chemistry and technology, vol. 17. New York, USA: CRC Press; 2010.
Nichols N, Martin V, Devine J, Li H, Jones D, Hake K. Variety performance: a critical issue for cotton competitiveness. Raliegh, North Carolina: Cotton Incorporated; 2012.
Google Scholar
Haigler C. Physiological and anatomical factors determining fiber structure and utility. In: Physiology of cotton. New York, USA: Springer; 2010. p. 33-47.
Bradow JM, Davidonis GH. Quantitation of fiber quality and the cotton production-processing interface: A physiologist’s perspective. J Cotton Sci. 2000;4:34–64.
Google Scholar
Frydrych I, Thibodeaux DP. Fiber quality evaluation-current and future trends/ intrinsic value of fiber quality in cotton. In: Wakelyn PJ, Chaudhry MR, editors. Cotton: technology for the 21st century. Washington DC: International Cotton Advisory Committee; 2010. p. 251–96.
Google Scholar
Taylor RA. High speed measurements of strength and elongation. In: World Cotton Research Conference I: 1994; Brisbane, Australia. 1994. p. 268–73.
Google Scholar
Suh MW, Cui X, Sasser PE. Small bundle tensile properties of cotton related to MANTIS and HVI data – a road to yarn strength prediction. In: Proceeding of Beltwide Cotton Conference: 1996. Nashville, TN: National Cotton Council; 1996. p. 1296–300.
Google Scholar
Hsieh Y-L, Honik E, Hartzell M. A developmental study of single fiber strength: greenhouse grown SJ-2 Acala cotton. Text Res J. 1995;65(2):101–12.
Article
CAS
Google Scholar
Mathangadeera R. Evaluating the impact of fiber processing on cotton fiber tensile properties. Lubbock, TX, USA: Texas Tech University; 2014.
Hsieh Y-L. Structural development of cotton fibers and linkages to fiber quality. In: Basra AS, editor. Cotton Fibers Developmental Biology, Quality Improvement, and Textile Processing. New York: Haworth Press, Inc; 1999. p. 137–65.
Google Scholar
Naylor GR, Delhom CD, Cui X, Gourlot J-P, Rodgers J. Understanding the influence of fiber length on the High Volume Instrument™ measurement of cotton fiber strength. Text Res J. 2014;84(9):979–88.
Article
CAS
Google Scholar
Munro JM. Cotton. 2nd ed. Harlow, UK: Longman Scientific & Technical; 1987.
Google Scholar
Patil NB, Singh M. Development of mediumstaple high-strength cotton suitable for rotor spinning systems. In: World Cotton Conference I: 1995; Bribane, Australia. 1995.
Google Scholar
Meredith W. Registration of MD 52ne high fiber quality cotton germplasm and recurrent parent MD 90ne. Crop Sci. 2005;45:807–8.
Article
Google Scholar
Meredith W. Minimum number of genes controlling cotton fiber strength in a backcross population. Crop Sci. 2005;45(3):1114–9.
Article
Google Scholar
Udall JA, Flagel LE, Cheung F, Woodward AW, Hovav R, Rapp RA, et al. Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics. 2007;8(1):81.
Article
PubMed Central
PubMed
Google Scholar
Hinchliffe DJ, Meredith WR, Yeater KM, Kim HJ, Woodward AW, Chen ZJ, et al. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theor Appl Genet. 2010;120(7):1347–66.
Article
CAS
PubMed
Google Scholar
Fang L, Tian R, Chen J, Wang S, Li X, Wang P, et al. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments. PLoS ONE. 2014;9(4):e94642.
Article
PubMed Central
PubMed
Google Scholar
Fang L, Tian R, Li X, Chen J, Wang S, Wang P, et al. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments. BMC Genomics. 2014;15(1):838.
Article
PubMed Central
PubMed
Google Scholar
Kim HJ, Tang Y, Moon HS, Delhom CD, Fang DD. Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genomics. 2013;14(1):889.
Article
PubMed Central
PubMed
Google Scholar
Wang C, Lv Y, Xu W, Zhang T, Guo W. Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics. 2014;15(1):94.
Article
PubMed Central
PubMed
Google Scholar
Pearson K. Contributions to the Mathematical Theory of Evolution. III. Regression, Heredity, and Panmixia. Proc R Soc Lond. 1895;59(353-358):69–71.
Article
Google Scholar
Liu Y, Thibodeaux D, Gamble G. Development of Fourier transform infrared spectroscopy in direct, non-destructive, and rapid determination of cotton fiber maturity. Text Res J. 2011;81(15):1559–67.
Article
CAS
Google Scholar
Liu Y, Thibodeaux D, Gamble G, Bauer P, VanDerveer D. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray Diffraction (XRD) in the determination of cotton fiber crystallinity. Appl Spectrosc. 2012;66(8):983–6.
Article
CAS
PubMed
Google Scholar
Liu Y, Kim HJ. Use of ATR-FTIR spectroscopy in direct, non-destructive, and rapid assessment of developmental cotton fibers grown in planta and in culture. Appl Spectrosc. 2015;69(8):1004–10.
Article
CAS
PubMed
Google Scholar
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33:531–7.
Article
CAS
PubMed
Google Scholar
Audic S, Claverie J-M. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–95.
CAS
PubMed
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38(Web Server):W64–70.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shi Y-H, Zhu S-W, Mao X-Z, Feng J-X, Qin Y-M, Zhang L, et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell. 2006;18(3):651–64.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li G, Meng X, Wang R, Mao G, Han L, Liu Y, et al. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet. 2012;8(6):e1002767.
Article
PubMed Central
CAS
PubMed
Google Scholar
Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, et al. The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell. 2007;19(2):509–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rubinovich L, Weiss D. The Arabidopsis cysteine‐rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta. Plant J. 2010;64(6):1018–27.
Article
CAS
PubMed
Google Scholar
Hamann T. The plant cell wall integrity maintenance mechanism–A case study of a cell wall plasma membrane signaling network. Phytochemistry. 2015;112:100–9.
Article
CAS
PubMed
Google Scholar
Xu S-L, Rahman A, Baskin TI, Kieber JJ. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell. 2008;20(11):3065–79.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harpaz‐Saad S, McFarlane HE, Xu S, Divi UK, Forward B, Western TL, et al. Cellulose synthesis via the FEI2 RLK/SOS5 pathway and cellulose synthase 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant J. 2011;68(6):941–53.
Article
PubMed
Google Scholar
An C, Saha S, Jenkins JN, Scheffler BE, Wilkins TA, Stelly DM. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton. Mol Gen Genomics. 2007;278(5):539–53.
Article
CAS
Google Scholar
Ruan Y-L, Llewellyn DJ, Furbank RT. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell Online. 2001;13(1):47–60.
CAS
Google Scholar
Liu Q, Talbot M, Llewellyn DJ. Pectin methylesterase and pectin remodelling differ in the fibre walls of two gossypium species with very different fibre properties. PLoS ONE. 2013;8(6):e65131.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, et al. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta. 2010;232(5):1191–205.
Article
CAS
PubMed
Google Scholar
Jiang Y, Guo W, Zhu H, Ruan Y-L, Zhang T. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J. 2012;10(3):301–12.
Article
CAS
PubMed
Google Scholar
Kim HJ, Hinchliffe DJ, Triplett BA, Chen ZJ, Stelly DM, Yeater KM, et al. Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS One. 2015;10(4):e0125046.
Article
PubMed Central
PubMed
Google Scholar
Liu L, Shang-Guan K, Zhang B, Liu X, Yan M, Zhang L, et al. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet. 2013;9(8):15.
Google Scholar
Sánchez-Rodríguez C, Bauer S, Hématy K, Saxe F, Ibáñez AB, Vodermaier V, et al. Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell. 2012;24(2):589–607.
Article
PubMed Central
PubMed
Google Scholar
Zhong R, Ye ZH. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol. 2012;53(2):368–80.
Article
CAS
PubMed
Google Scholar
Yang C, Xu Z, Song J, Conner K, Barrena GV, Wilson ZA. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell. 2007;19(2):534–48.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ko J-H, Jeon H-W, Kim W-C, Kim J-Y, Han K-H. The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis. Ann Bot. 2014;114(6):1099–107. mcu126.
Article
PubMed Central
PubMed
Google Scholar
Kim HJ, Murai N, Fang DD, Triplett BA. Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues. Plant Sci. 2011;180(2):323–32.
Article
CAS
PubMed
Google Scholar
Mokshina N, Gorshkova T, Deyholos MK. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers. PLoS ONE. 2014;9(6):e97949.
Article
PubMed Central
PubMed
Google Scholar
Islam MS, Zeng L, Delhom CD, Song X, Kim HJ, Li P, et al. Identification of cotton fiber quality quantitative trait loci using intraspecific crosses derived from two near-isogenic lines differing in fiber bundle strength. Molecular Breeding 2014:1-12.
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33(5):524–30.
Article
PubMed
Google Scholar
Seagull RW. Cytoskeletal involvement in cotton fiber growth and development. Micron. 1993;24(6):643–60.
Article
Google Scholar
Haigler CH, Betancur L, Stiff MR, Tuttle JR. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Frontiers Plant Sci. 2012;3:104.
Article
CAS
Google Scholar
Benedict CR, Kohel JR, Lewis HL. Cotton fiber quality. In: Smith CW, Cothren JT, editors. Cotton origin, histrory, technology, and production. New York: John Wiley & sons, Inc; 1999. p. 269–88.
Google Scholar
Kim HJ. Fiber biology. In: Fang DD, Percy RG, Madison WI, editors. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 2nd ed. 2015. p. 97–127.
Google Scholar
Beasley C, Ting IP. Effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. Am J Bot. 1974;61:188–94.
Article
CAS
Google Scholar
Singh B, Avci U, Inwood SEE, Grimson MJ, Landgraf J, Mohnen D, et al. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol. 2009;150(2):684–99.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Smet I, Voß U, Jürgens G, Beeckman T. Receptor-like kinases shape the plant. Nat Cell Biol. 2009;11(10):1166–73.
Article
PubMed
Google Scholar
Yoon GM, Kieber JJ. 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants. AoB Plants. 2013;5:plt017.
Article
PubMed Central
Google Scholar
Wang J, Kucukoglu M, Zhang L, Chen P, Decker D, Nilsson O, et al. The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway. BMC Plant Biol. 2013;13(1):94.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song D, Xi W, Shen J, Bi T, Li L. Characterization of the plasma membrane proteins and receptor-like kinases associated with secondary vascular differentiation in poplar. Plant Mol Biol. 2011;76(1-2):97–115.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y-L, Sun J, Xia G-X. Cloning and characterization of a gene for an LRR receptor-like protein kinase associated with cotton fiber development. Mol Gen Genomics. 2005;273(3):217–24.
Article
CAS
Google Scholar
Ben-Tov D, Abraham Y, Stav S, Thompson K, Loraine A, Elbaum R, et al. COBRA-LIKE 2, a member of the GPI-anchored COBRA-LIKE family, plays a role in cellulose deposition in Arabidopsis seed coat mucilage secretory cells. Plant Physiol. 2015;167(3):711–24.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, et al. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell. 2003;15(9):2020–31.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ching A, Dhugga KS, Appenzeller L, Meeley R, Bourett TM, Howard RJ, et al. Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls. Planta. 2006;224(5):1174–84.
Article
CAS
PubMed
Google Scholar
Bravo JM, Campo S, Murillo I, Coca M, San Segundo B. Fungus-and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Plant Mol Biol. 2003;52(4):745–59.
Article
CAS
PubMed
Google Scholar
Nakazaki T, Tsukiyama T, Okumoto Y, Kageyama D, Naito K, Inouye K, et al. Distribution, structure, organ-specific expression, and phylogenic analysis of the pathogenesis-related protein-3 chitinase gene family in rice (Oryza sativa L.). Genome. 2006;49(6):619–30.
Article
CAS
PubMed
Google Scholar
Mutwil M, Klie S, Tohge T, Giorgi FM, Wilkins O, Campbell MM, et al. PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell. 2011;23(3):895–910.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delhom CD, Cui X, Thibodeaux D. Single fiber testing via Favimat. Proceedings of Beltwide Cotton Conference 2010:1405-1410.
American Society for Testing and Materials. Standard test method for linear density of textile fibers. Option A, Fiber bundle weighing. In.: ASTM Standard D1577-07. Annu. Book of ASTM Standards. Philadelphia, PA: ASTM; 2012.
Boylston EK, Thibodeaux DP, Evans JP. Applying Microscopy to the Development of a Reference Method for Cotton Fiber Maturity. Textile Res J. 1993;63(2):80–7.
Article
CAS
Google Scholar
Xu B, Huang Y. Image Analysis for Cotton Fibers Part II: Cross-Sectional Measurements. Text Res J. 2004;74(5):409–16.
Article
CAS
Google Scholar
Thibodeaux DP, Evans JP. Cotton fiber maturity by image analysis. Text Res J. 1986;56(2):130–9.
Article
Google Scholar
Thibodeaux DP, Rajasekaran K. Development of new reference standards for cotton fiber maturity. J Cotton Sci. 1999;3:188–93.
Google Scholar
Naoumkina M, Thyssen G, Fang DD, Hinchliffe DJ, Florane C, Yeater KM, et al. The Li2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.). PLoS One. 2014;9(3):e90830.
Article
PubMed Central
PubMed
Google Scholar
Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26(7):873–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hulsen T, de Vlieg J, Alkema W. BioVenn–a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. 2008;9(1):488.
Article
PubMed Central
PubMed
Google Scholar
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914–39.
Article
CAS
PubMed
Google Scholar