Altpeter F, Vasil V, Srivastava V, Stöger E, Vasil IK: Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 1996, 16: 12-17. 10.1007/s002990050166.
Article
PubMed
CAS
Google Scholar
Bommineni VR, Jauhar PP, Peterson TS: Transgenic durum wheat by microprojectile bombardment of isolated scutella. J Heredity. 1997, 88: 301-313.
Article
Google Scholar
Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1006/abio.1976.9999.
Article
PubMed
CAS
Google Scholar
Bushuk W: Wheat breeding for end-product use. Euphytica. 1998, 100: 137-145. 10.1023/A:1018368316547.
Article
Google Scholar
Cao J, Duan X, McElroy D, Wu R: Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep. 1992, 11: 586-591.
Article
PubMed
CAS
Google Scholar
Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y: Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 1997, 115: 971-980.
PubMed
CAS
PubMed Central
Google Scholar
Chugh A, Khurana P: Herbicide resistant transgenics of bread wheat (T. aestivum) and emmer wheat (T. dicoccum) by particle bombardment and Agrobacterium-mediated approaches. Curr Sci. 2003, 84: 78-83.
CAS
Google Scholar
Chugh A, Khurana P: Regeneration via somatic embryogenesis from leaf basal segments and genetic transformation of bread wheat and emmer wheat by particle bombardment. Plant Cell Tissue & Organ Culture. 2003, 74: 151-161. 10.1023/A:1023945610740.
Article
CAS
Google Scholar
Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: version II. Plant Mol Biol Rep. 1983, 4: 19-21.
Article
Google Scholar
Harvey A, Moisan L, Lindup S, Lonsdale D: Wheat regenerated from scutellum callus as a source of material for transformation. Plant Cell Tissue Organ Culture. 1999, 57: 153-156. 10.1023/A:1006344615666.
Article
Google Scholar
He GY, Rooke L, Steele S, Bekes F, Gras P, Tatham AS, Fido R, Barcelo P, Shewry PR, Lazzeri PA: Transformation of pasta wheat (Triticum turgidum L. var durum) with high-molecular weight glutenin subunit genes and modification of dough functionality. Mol Breeding. 1999, 5: 377-386. 10.1023/A:1009681321708.
Article
CAS
Google Scholar
Hong B, Uknes SJ, Ho T-HD: Cloning and characterization of a cDNA encoding a mRNA rapidly induced by ABA in barley aleurone layers. Plant Mol Biol. 1988, 11: 495-506.
Article
PubMed
CAS
Google Scholar
Khurana J, Chugh A, Khurana P: Regeneration from mature and immature embryos and transient gene expression via Agrobacterium-mediated transformation in emmer wheat (Triticum aestivum Schuble). Ind J Expt Biol. 2002, 40: 1295-1303.
CAS
Google Scholar
Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6: 3901-3907.
PubMed
CAS
PubMed Central
Google Scholar
Lee B, Murdoch K, Kreis M, Jones MGK: A method for large-scale progeny screening of putative transformed cereal. Plant Mol Biol Rep. 1989, 7: 129-134.
Article
Google Scholar
Lonsdale DM, Lindup S, Moisan LJ, Harvey AJ: Using firefly luciferase to identify the transition from transient to stable expression in bombarded wheat scutellum tissue. Physiol Plant. 1998, 102: 447-458. 10.1034/j.1399-3054.1998.1020313.x.
Article
CAS
Google Scholar
Maddock SE: Cell culture, somatic embryogenesis and plant regeneration in wheat, barley, oats, rye and triticale. In: Cereal Tissue and Cell Culture. Edited by: Bright SWJ, Jones MGK. 1985, Martinus Nijhoff, Dordrecht, 131-174.
Chapter
Google Scholar
Mahalakshmi A, Chugh A, Khurana P: Exogenous DNA uptake via cellular permeabilization and expression of foreign gene in wheat zygotic embryos. Plant Biotechnology. 2000, 17: 235-240.
Article
CAS
Google Scholar
McElroy D, Zhang W, Cao J, Wu R: Isolation of an efficient actin promoter for use in rice transformation. Plant Cell. 1990, 2: 163-171. 10.1105/tpc.2.2.163.
Article
PubMed
CAS
PubMed Central
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962, 15: 473-497.
Article
CAS
Google Scholar
Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK: Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues from microprojectile bombardment with two distinct gene constructs. Plant J. 1994, 5: 285-297. 10.1046/j.1365-313X.1994.05020285.x.
Article
CAS
Google Scholar
Ortiz JPA, Reggiardo MI, Ravizzini RA, Altabe SG, Cervigni GDL, Spitteler MA, Morata MM, Elias FE, Vallejos RH: Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep. 1996, 15: 877-881. 10.1007/s002990050140.
Article
PubMed
CAS
Google Scholar
Ozgens M, Turet M, Altinok S, Sanzak C: Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell Rep. 1996, 18: 331-335. 10.1007/s002990050581.
Google Scholar
Ozgens M, Turet M, Ozcan S, Sanzak C: Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes. Plant Breeding. 1996, 115: 455-458.
Article
Google Scholar
Ozias-Akins P, Vasil IK: Callus induction and growth from the mature embryos. Protoplasma. 1983, 115: 104-113.
Article
Google Scholar
Patnaik D: Studies on regeneration and genetic transformation of Triticum aestivum and Triticum durum by Agrobacterium co-cultivation and particle bombardment. Ph.D. thesis. University of Delhi, India. 2000
Google Scholar
Patnaik D, Khurana P: Wheat Biotechnology: A minireview. Electronic Journal of Biotechnology. 2001, 4: 1-29. [http://www.ejb.org/content/vol4/issue2/full/4/].
Google Scholar
Patnaik D, Vishnudasan D, Khurana P: Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum.2001.
Google Scholar
Roy P, Sahasrabuddhe N: A sensitive and simple paper chromatographic procedure for detecting neomycin phosphotransferase II (NPTII) gene expression. Plant Mol Biol. 1990, 14: 873-876.
Article
PubMed
CAS
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. 1989
Google Scholar
Sanford JC, Smith FD, Russell JA: Optimizing the biolistic process for different biological application. Methods Enzymol. 1993, 217: 483-509.
Article
PubMed
CAS
Google Scholar
Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TDH, Qu R: Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 2000, 155: 1-9. 10.1016/S0168-9452(99)00247-2.
Article
PubMed
CAS
Google Scholar
Takumi S, Shimada T: Production of transgenic wheat through particle bombardment of scutellar tissues: frequency is influenced by culture duration. J Plant Physiol. 1996, 149: 418-423.
Article
CAS
Google Scholar
Vasil V, Castillo AM, Fromm ME, Vasil IK: Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology. 1992, 10: 667-674.
Article
CAS
Google Scholar
Weeks JT, Anderson OD, Blechl AE: Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 1993, 102: 1077-1084.
PubMed
CAS
PubMed Central
Google Scholar
Witrzens B, Brettell RIS, Murray FR, McElroy D, Li Z, Dennis ES: Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. Aust J Plant Physiol. 1998, 25: 39-44.
Article
CAS
Google Scholar
Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R: Expression of a late embryogenesis abundant protein gene HVA 1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 1996, 110: 249-257.
PubMed
CAS
PubMed Central
Google Scholar
Zhang L, Rybczynski JJ, Langenberg WG, Mitra A, French R: An efficient wheat transformation procedure: transformed calli with long-term morphogenic potential for plant regeneration. Plant Cell Rep. 2000, 19: 241-250. 10.1007/s002990050006.
Article
CAS
Google Scholar
Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeay ME, Brown SM, Santino CG, Fry JE: Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 1995, 15: 159-163.
PubMed
CAS
Google Scholar