Rajjou L, Debeaujon I: Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biol. 2008, 331 (10): 796-805.
Article
PubMed
Google Scholar
Chen H, Chu P, Zhou Y, Li Y, Liu J, Ding Y, Tsang EW, Jiang L, Wu K, Huang S: Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. J Exp Bot. 2012, 63 (11): 4107-4121. 10.1093/jxb/ers093.
Article
CAS
PubMed
Google Scholar
Chatelain E, Hundertmark M, Leprince O, Gall SL, Satour P, Deligny-Penninck S, Rogniaux H, Buitink J: Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant Cell Environ. 2012, 35 (8): 1440-1455. 10.1111/j.1365-3040.2012.02501.x.
Article
CAS
PubMed
Google Scholar
Chatelain E, Satour P, Laugier E, Ly Vu B, Payet N, Rey P, Montrichard F: Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proc Natl Acad Sci USA. 2013, 110 (9): 3633-3638. 10.1073/pnas.1220589110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cushman JC, Oliver MJ: Understanding vegetative desiccation tolerance using integrated functional genomics approaches within a comparative evolutionary framework. Plant Desiccation Tolerance. Edited by: Lüttge U, Beck E, Bartels D. Heidelberg Dordrecht London New York: Springer, 2011:307-338.
Chapter
Google Scholar
Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D: Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci. 2012, 69 (19): 3175-3186. 10.1007/s00018-012-1088-0.
Article
CAS
PubMed
Google Scholar
Illing N, Denby KJ, Collett H, Shen A, Farrant JM: The signature of seeds in resurrection plants: A molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol. 2005, 45 (5): 771-787. 10.1093/icb/45.5.771.
Article
CAS
PubMed
Google Scholar
Farrant JM, Moore JP: Programming desiccation-tolerance: from plants to seeds to resurrection plants. Curr Opin Plant Biol. 2011, 14 (3): 340-345. 10.1016/j.pbi.2011.03.018.
Article
CAS
PubMed
Google Scholar
Almoguera C, Rojas A, Díaz-Martín J, Prieto-Dapena P, Carranco R, Jordano J: A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J Biol Chem. 2002, 277 (46): 43866-43872. 10.1074/jbc.M207330200.
Article
CAS
PubMed
Google Scholar
Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Carranco R, Hiratsu K, Ohme-Takagi M, Jordano J: Loss of function of the HSFA9 seed longevity program. Plant Cell Environ. 2010, 33 (8): 1408-1417.
CAS
PubMed
Google Scholar
Prieto-Dapena P, Castaño R, Almoguera C, Jordano J: Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol. 2006, 142 (3): 1102-1112. 10.1104/pp.106.087817.
Article
PubMed Central
CAS
PubMed
Google Scholar
Prieto-Dapena P, Castaño R, Almoguera C, Jordano J: The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs. Plant J. 2008, 54 (6): 1004-1014. 10.1111/j.1365-313X.2008.03465.x.
Article
CAS
PubMed
Google Scholar
Almoguera C, Prieto-Dapena P, Personat JM, Tejedor-Cano J, Lindahl M, Diaz-Espejo A, Jordano J: Protection of the photosynthetic apparatus from extreme dehydration and oxidative stress in seedlings of transgenic tobacco. PLoS ONE. 2012, 7 (12): e51443-10.1371/journal.pone.0051443.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carranco R, Espinosa JM, Prieto-Dapena P, Almoguera C, Jordano J: Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity. Proc Natl Acad Sci USA. 2010, 107 (50): 21908-21913. 10.1073/pnas.1014856107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tejedor-Cano J, Carranco R, Personat JM, Prieto-Dapena P, Almoguera C, Espinosa JM, Jordano J: A passive repression mechanism that hinders synergic transcriptional activation by heat shock factors Involved in sunflower seed longevity. Mol Plant. 2014, 7 (1): 256-259. 10.1093/mp/sst117.
Article
CAS
PubMed
Google Scholar
Scharf KD, Berberich T, Ebersberger I, Nover L: The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta. 2012, 1819 (2): 104-119. 10.1016/j.bbagrm.2011.10.002.
Article
CAS
PubMed
Google Scholar
Friedberg JN, Bowley SR, McKersie BD, Gurley WB, Czarnecka-Verner E: Isolation and characterization of class A4 heat shock transcription factor from alfalfa. Plant Sci. 2006, 171: 332-344. 10.1016/j.plantsci.2006.04.007.
Article
CAS
PubMed
Google Scholar
Zhang JZ: Overexpression analysis of plant transcription factors. Curr Opin Plant Biol. 2003, 6 (5): 430-440. 10.1016/S1369-5266(03)00081-5.
Article
CAS
PubMed
Google Scholar
Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T: Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development. 2004, 131 (5): 1089-1100. 10.1242/dev.00925.
Article
CAS
PubMed
Google Scholar
Almoguera C, Prieto-Dapena P, Díaz-Martín J, Espinosa JM, Carranco R, Jordano J: The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biol. 2009, 9: 75-10.1186/1471-2229-9-75.
Article
PubMed Central
PubMed
Google Scholar
Prändl R, Hinderhofer K, Eggers SG, Schöffl F: HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet. 1998, 258 (3): 269-278. 10.1007/s004380050731.
Article
PubMed
Google Scholar
Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD: In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 2002, 16 (12): 1555-1567. 10.1101/gad.228802.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S: Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 2006, 48 (4): 535-547. 10.1111/j.1365-313X.2006.02889.x.
Article
CAS
PubMed
Google Scholar
Ogawa D, Yamaguchi K, Nishiuchi T: High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot. 2007, 58 (12): 3373-3383. 10.1093/jxb/erm184.
Article
CAS
PubMed
Google Scholar
Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K: Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun. 2008, 368 (3): 515-521. 10.1016/j.bbrc.2008.01.134.
Article
CAS
PubMed
Google Scholar
Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y: Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell. 2009, 21: 4031-4043. 10.1105/tpc.109.066902.
Article
PubMed Central
CAS
PubMed
Google Scholar
Banti V, Mafessoni F, Loreti E, Alpi A, Perata P: The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol. 2010, 152 (3): 1471-1483. 10.1104/pp.109.149815.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xin H, Zhang H, Chen L, Li X, Lian Q, Yuan X, Hu X, Cao L, He X, Yi M: Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep. 2010, 29 (8): 875-885. 10.1007/s00299-010-0873-1.
Article
CAS
PubMed
Google Scholar
Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PAC, Richard F, Persad R, Bowden L, Hickman R, Martin C, Beynon JL, Buchanan-Wollaston V, Baker NR, Morison JIL, Schöffl F, Ott S, Mullineau PM: Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. J Exp Bot. 2013, 64 (11): 3467-3481. 10.1093/jxb/ert185.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Z, Zhang L, Wang A, Xu X, Li J: Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers Increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS ONE. 2013, 8 (1): e54880-10.1371/journal.pone.0054880.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K: A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA. 2002, 99 (11): 7530-7535. 10.1073/pnas.112209199.
Article
PubMed Central
CAS
PubMed
Google Scholar
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R: Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005, 17 (1): 268-281. 10.1105/tpc.104.026971.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fortunati A, Piconese S, Tassone P, Ferrari S, Migliaccio F: A new mutant of Arabidopsis disturbed in its roots, right-handed slanting, and gravitropism defines a gene that encodes a heat-shock factor. J Exp Bot. 2008, 59 (6): 1363-1374. 10.1093/jxb/ern047.
Article
CAS
PubMed
Google Scholar
Chan-Schaminet KY, Baniwal SK, Bublak D, Nover L, Scharf KD: Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. J Biol Chem. 2009, 284 (31): 20848-20857. 10.1074/jbc.M109.007336.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li M, Berendzen KW, Schöffl F: Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol Biol. 2010, 73 (4–5): 559-567.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rousselin P, Molinier J, Himber C, Schontz D, Prieto-Dapena P, Jordano J, Martini N, Weber S, Horn R, Ganssmann M, Grison R, Pagniez M, Toppan A, Friedt W, Hahne G: Modification of sunflower oil quality by seed-specific expression of a heterologous ∆9-stearoyl-(acyl carrier protein) desaturase gene. Plant Breed. 2002, 121: 108-116. 10.1046/j.1439-0523.2002.00682.x.
Article
CAS
Google Scholar
Becker D: Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res. 1990, 18 (1): 203-10.1093/nar/18.1.203.
Article
PubMed Central
CAS
PubMed
Google Scholar
Almoguera C, Coca MA, Jordano J: Tissue-specific expression of sunflower heat shock proteins in response to water stress. Plant J. 1993, 4 (6): 947-958. 10.1046/j.1365-313X.1993.04060947.x.
Article
CAS
Google Scholar