Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM: A molecular evolutionary framework for the phylum Nematoda. Nature. 1998, 392 (6671): 71-75. 10.1038/32160.
Article
PubMed
CAS
Google Scholar
Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EGJ, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC: Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol. 2008, 26 (8): 909-915. 10.1038/nbt.1482.
Article
PubMed
CAS
Google Scholar
Hussey RS, Grundler FM: Nematode parasitism of plants. The Physiology and Biochemistry of Free-living and Plant-parasitic nematodes. vol. 1st edition. Edited by: Perry RN, Wright DJ. CAB International: CAB International; 1998: 213-243.
Google Scholar
Wyss U, Zunke U: Observations on the behaviour of second stage juveniles of Heterodera schachtii inside host roots. Revue de Nématologie. 1986, 9 (2): 153-165.
Google Scholar
Jones MGK, Payne HL: Early stage of nematode-induced giant-cell formation in roots of Impatiens balsamina. J Nematol. 1978, 10 (1): 70-84.
PubMed
CAS
PubMed Central
Google Scholar
Jones MGK: Host cell responses to endoparasitic nematode attack: structure and function of giant cells and syncytia. Ann Appl Biol. 1981, 97 (3): 353-372. 10.1111/j.1744-7348.1981.tb05122.x.
Article
CAS
Google Scholar
Golinowski W, Grundler FMW, Sobczak M: Changes in the structure of Arabidopsis thaliana during female development of the plant-parasitic nematode Heterodera schachtii. Protoplasma. 1996, 194 (1–2): 103-116.
Article
Google Scholar
Wyss U, Grundler FMW: Heterodera-Schachtii and Arabidopsis-Thaliana, a Model Host-Parasite Interaction. Nematologica. 1992, 38 (4): 488-493.
Article
Google Scholar
Goellner M, Wang XH, Davis EL: Endo-beta-1,4-glucanase expression in compatible plant-nematode interactions. Plant Cell. 2001, 13 (10): 2241-2255.
PubMed
CAS
PubMed Central
Google Scholar
Wieczorek K, Golecki B, Gerdes L, Heinen P, Szakasits D, Durachko DM, Cosgrove DJ, Kreil DP, Puzio PS, Bohlmann H: Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Plant J. 2006, 48 (1): 98-112. 10.1111/j.1365-313X.2006.02856.x.
Article
PubMed
CAS
Google Scholar
Wieczorek K, Hofmann J, Blochl A, Szakasits D, Bohlmann H, Grundler FMW: Arabidopsis endo-1,4-beta-glucanases are involved in the formation of root syncytia induced by Heterodera schachtii. Plant J. 2008, 53 (2): 336-351.
Article
PubMed
CAS
Google Scholar
Endo B: Ultrastructure of initial responses of susceptible and resistant soybean roots to infection by Heterodera glycines. Revue de Nematologie. 1991, 14 (1): 73-94.
Google Scholar
Grundler FMW, Sobczak M, Lange S: Defence responses of Arabidopsis thaliana during invasion and feeding site induction by the plant-parasitic nematode Heterodera glycines. Physiol Mol Plant P. 1997, 50 (6): 419-429. 10.1006/pmpp.1997.0100.
Article
Google Scholar
Davis EL, Hussey RS, Baum TJ: Getting to the roots of parasitism by nematodes. Trends Parasitol. 2004, 20 (3): 134-141. 10.1016/j.pt.2004.01.005.
Article
PubMed
Google Scholar
Davis EL, Mitchum MG: Nematodes, Sophisticated parasites of legumes. Plant Physiol. 2005, 137 (4): 1182-1188. 10.1104/pp.104.054973.
Article
PubMed
CAS
PubMed Central
Google Scholar
Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, Kreil DP, Sykacek P, Grundler FM, Bohlmann H: The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. Plant J. 2009, 57 (5): 771-784. 10.1111/j.1365-313X.2008.03727.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Siddique S, Endres S, Atkins JM, Szakasits D, Wieczorek K, Hofmann J, Blaukopf C, Urwin PE, Tenhaken R, Grundler FMW: Myo-inositol oxygenase genes are involved in the development of syncytia induced by Heterodera schachtii in Arabidopsis roots. New Phytol. 2009, 184 (2): 457-472. 10.1111/j.1469-8137.2009.02981.x.
Article
PubMed
CAS
Google Scholar
Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD: The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. P Natl Acad Sci USA. 1997, 94 (13): 7076-7081. 10.1073/pnas.94.13.7076.
Article
CAS
Google Scholar
Ohme-Takagi M, Shinshi H: Ethylene-Inducible DNA-Binding Proteins That Interact with an Ethylene-Responsive Element. Plant Cell. 1995, 7 (2): 173-182.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nakano T, Suzuki K, Fujimura T, Shinshi H: Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006, 140 (2): 411-432. 10.1104/pp.105.073783.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen WQ, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou GZ, Whitham SA: Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell. 2002, 14 (3): 559-574. 10.1105/tpc.010410.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fowler S, Thomashow MF: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002, 14 (8): 1675-1690. 10.1105/tpc.003483.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhu Q, Zhang JT, Gao XS, Tong JH, Xiao LT, Li WB, Zhang HX: The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene. 2010, 457 (1–2): 1-12.
Article
PubMed
CAS
Google Scholar
Krishnaswamy S, Verma S, Rahman MH, Kav NNV: Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol. 2011, 75 (1–2): 107-127.
Article
PubMed
CAS
Google Scholar
He P, Chintamanani S, Chen ZY, Zhu LH, Kunkel BN, Alfano JR, Tang XY, Zhou JM: Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J. 2004, 37 (4): 589-602. 10.1111/j.1365-313X.2003.01986.x.
Article
PubMed
CAS
Google Scholar
Wang Z, Cao GG, Wang XL, Miao J, Liu XT, Chen ZL, Qu LJ, Gu HG: Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Rep. 2008, 27 (1): 125-135.
Article
PubMed
CAS
Google Scholar
Chen H, Pan J, Zhao X, Zhou J, Cai R: Reporter-based screen for Arabidopsis mutants compromised in nonhost resistance. Chinese Sci Bull. 2008, 53 (7): 1027-1034. 10.1007/s11434-008-0144-5.
CAS
Google Scholar
Brooks DM, Bender CL, Kunkel BN: The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol. 2005, 6 (6): 629-639. 10.1111/j.1364-3703.2005.00311.x.
Article
PubMed
CAS
Google Scholar
Ehlting J, Chowrira SG, Mattheus N, Aeschliman DS, Arimura G, Bohlmann J: Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling. BMC Genomics. 2008, 9: 154. 10.1186/1471-2164-9-154.
Article
PubMed
PubMed Central
Google Scholar
Atallah M: Jasmonate-responsive AP2-domain transcription factors in Arabidopsis. 2005, Leiden, The Netherlands: University of Leiden
Google Scholar
Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J: The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 2008, 147 (3): 1347-1357. 10.1104/pp.108.117523.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tsutsui T, Kato W, Asada Y, Sako K, Sato T, Sonoda Y, Kidokoro S, Yamaguchi-Shinozaki K, Tamaoki M, Arakawa K: DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J Plant Res. 2009, 122 (6): 633-643. 10.1007/s10265-009-0252-6.
Article
PubMed
CAS
Google Scholar
Ali MA, Shah KH, Bohlmann H: pMAA-Red: a new pPZP-derived vector for fast visual screening of transgenic Arabidopsis plants at the seed stage. BMC Biotechnol. 2012, 12 (1): 37. 10.1186/1472-6750-12-37.
Article
PubMed
CAS
PubMed Central
Google Scholar
Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K: The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Curr Biol. 2011, 21 (6): 508-514. 10.1016/j.cub.2011.02.020.
Article
PubMed
CAS
Google Scholar
Son GH, Wan JR, Kim HJ, Nguyen XC, Chung WS, Hong JC, Stacey G: Ethylene-Responsive Element-Binding Factor 5, ERF5, Is Involved in Chitin-Induced Innate Immunity Response. Mol Plant Microbe In. 2012, 25 (1): 48-60. 10.1094/MPMI-06-11-0165.
Article
CAS
Google Scholar
Ogawa T, Pan L, Kawai-Yamada M, Yu LH, Yamamura S, Koyama T, Kitajima S, Ohme-Takagi M, Sato F, Uchimiya H: Functional analysis of Arabidopsis ethylene-responsive element binding protein conferring resistance to Bax and abiotic stress-induced plant cell death. Plant Physiol. 2005, 138 (3): 1436-1445. 10.1104/pp.105.063586.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: GENEVESTIGATOR, Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136 (1): 2621-2632. 10.1104/pp.104.046367.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gheysen G, Mitchum MG: How nematodes manipulate plant development pathways for infection. Curr Opin Plant Biol. 2011, 14 (4): 415-421. 10.1016/j.pbi.2011.03.012.
Article
PubMed
Google Scholar
Hamamouch N, Li C, Hewezi T, Baum TJ, Mitchum MG, Hussey RS, Vodkin LO, Davis EL: The interaction of the novel 30C02 cyst nematode effector protein with a plant beta-1,3-endoglucanase may suppress host defence to promote parasitism. J Exp Bot. 2012, 63 (10): 3683-3695. 10.1093/jxb/ers058.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hamamouch N, Li CY, Seo PJ, Park CM, Davis EL: Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol Plant Pathol. 2011, 12 (4): 355-364. 10.1111/j.1364-3703.2010.00675.x.
Article
PubMed
CAS
Google Scholar
Postma WJ, Slootweg EJ, Rehman S, Finkers-Tomczak A, Tytgat TO, van Gelderen K, Lozano-Torres JL, Roosien J, Pomp R, van Schaik C: The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Plant Physiol. 2012, 160 (2): 944-954. 10.1104/pp.112.200188.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hewezi T, Baum T: Manipulation of Plant Cells by Cyst and Root-Knot Nematode Effectors. Mol Plant Microbe Interact. 2013, 26 (1): 9-16. 10.1094/MPMI-05-12-0106-FI.
Article
PubMed
CAS
Google Scholar
Birkenbihl RP, Diezel C, Somssich IE: Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward Botrytis cinerea Infection. Plant Physiol. 2012, 159 (1): 266-285. 10.1104/pp.111.192641.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wubben MJE, Jin J, Baum TJ: Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Mol Plant Microbe In. 2008, 21 (4): 424-432. 10.1094/MPMI-21-4-0424.
Article
CAS
Google Scholar
Nahar K, Kyndt T, De Vleesschauwer D, Hofte M, Gheysen G: The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice. Plant Physiol. 2011, 157 (1): 305-316. 10.1104/pp.111.177576.
Article
PubMed
CAS
PubMed Central
Google Scholar
Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J: Callose Deposition: A Multifaceted Plant Defense Response. Mol Plant Microbe In. 2011, 24 (2): 183-193. 10.1094/MPMI-07-10-0149.
Article
CAS
Google Scholar
Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM: Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell. 2010, 22 (3): 973-990. 10.1105/tpc.109.069658.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hussey RS, Mims CW, Westcott SW: Immunocytochemical Localization of Callose in Root Cortical-Cells Parasitized by the Ring Nematode Criconemella-Xenoplax. Protoplasma. 1992, 171 (1–2): 1-6.
Article
CAS
Google Scholar
Grundler FMW, Sobczak M, Golinowski W: Formation of wall openings in root cells of Arabidopsis thaliana following infection by the plant-parasitic nematode Heterodera schachtii. Eur J Plant Pathol. 1998, 104 (6): 545-551. 10.1023/A:1008692022279.
Article
Google Scholar
Hofmann J, Youssef-Banora M, de Almeida-Engler J, Grundler FMW: The Role of Callose Deposition Along Plasmodesmata in Nematode Feeding Sites. Mol Plant Microbe In. 2010, 23 (5): 549-557. 10.1094/MPMI-23-5-0549.
Article
CAS
Google Scholar
Hoth S, Stadler R, Sauer N, Hammes UZ: Differential vascularization of nematode-induced feeding sites. P Natl Acad Sci USA. 2008, 105 (34): 12617-12622. 10.1073/pnas.0803835105.
Article
CAS
Google Scholar
Hao PY, Liu CX, Wang YY, Chen RZ, Tang M, Du B, Zhu LL, He G: Herbivore-induced callose deposition on the sieve plates of rice: An important mechanism for host resistance. Plant Physiol. 2008, 146 (4): 1810-1820. 10.1104/pp.107.111484.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sijmons PC, Grundler FMW, Vonmende N, Burrows PR, Wyss U: Arabidopsis-Thaliana as a New Model Host for Plant-Parasitic Nematodes. Plant J. 1991, 1 (2): 245-254. 10.1111/j.1365-313X.1991.00245.x.
Article
Google Scholar
Epple P, Apel K, Bohlmann H: An Arabidopsis-Thaliana Thionin Gene Is Inducible Via a Signal-Transduction Pathway Different from That for Pathogenesis-Related Proteins. Plant Physiol. 1995, 109 (3): 813-820. 10.1104/pp.109.3.813.
Article
PubMed
CAS
PubMed Central
Google Scholar
Logemann E, Birkenbihl RP, Ulker B, Somssich IE: An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods. 2006, 2: 16. 10.1186/1746-4811-2-16.
Article
PubMed
PubMed Central
Google Scholar
Edwards K, Johnstone C, Thompson C: A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991, 19 (6): 1349. 10.1093/nar/19.6.1349.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jürgensen K: Untersuchungen zum Assimilat- und Wassertransfer in der Interaktion zwischen Arabidopsis thaliana und Heterodera schachtii. Thesis, Agrar- und Ernährungswissenschaftliche Fakultät. Kiel: Christian-Albrechts University; 2001.
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Article
PubMed
CAS
Google Scholar
Tornero P, Dangl JL: A high-throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. Plant J. 2001, 28 (4): 475-481.
Article
PubMed
CAS
Google Scholar