Ismail A, Thomson M, Singh R, Gregorio G, Mackill D: Designing rice varieties adapted to coastal areas of South and Southeast Asia. Journal of the Indian Society for Coastal Agricultural Research. 2008, 26: 69-73.
Google Scholar
Ismail A, Tuong T: Brackish water coastal zones of the monsoon tropics: challenges and opportunities. Natural resource management for poverty reduction and environmental sustainability in rice-based systems. Edited by: Haefele S, Ismail A. Los Banos, Philippines: International Rice Research Institute; 2009: 113-121.
Google Scholar
Wassmann R, Jagadish SVK, Heuer S, Ismail A, Redoña E, Serraj R, Singh RK, Howell G, Pathak H, Sumfleth K: Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron. 2009, 101: 59-122.
Article
Google Scholar
Akbar M, Yabuno T, Nakao S: Breeding for saline-resistant varieties of rice I. Variability for salt tolerance among some rice varieties. Japanese Journal of Breeding. 1972, 22 (5): 277-284.
Article
Google Scholar
Ismail A, Heuer S, Thomson M, Wissuwa M: Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol. 2007, 65 (4): 547-570. 10.1007/s11103-007-9215-2. http://dx.doi.org/10.1007/s11103-007-9215-2.
Article
PubMed
CAS
Google Scholar
Moradi F, Ismail AM, Gregorio G, Egdane J: Salinity tolerance of rice during reproductive development and association with tolerance at seedling stage. Indian Journal of Plant Physiology. 2003, 8: 105-116.
Google Scholar
Ashraf M: Some important physiological selection criteria for salt tolerance in plants. Flora. 2004, 199 (5): 361-376. 10.1078/0367-2530-00165.
Article
Google Scholar
Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM: Recent updates on salinity stress in rice: from physiological to molecular responses. Critical Reviews in Plant Sciences. 2011, 30: 329-377. 10.1080/07352689.2011.587725.
Article
Google Scholar
Yeo AR, Yeo ME, Flowers SA, Flowers TJ: Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor Appl Genet. 1990, 79 (3): 377-384. 10.1007/BF01186082. http://dx.doi.org/10.1007/BF01186082.
Article
PubMed
CAS
Google Scholar
Zeng L, Poss J, Wilson C, Draz AS, Gregorio G, Grieve C: Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica. 2003, 129 (3): 281-292. 10.1023/A:1022248522536. http://dx.doi.org/10.1023/A:1022248522536.
Article
CAS
Google Scholar
Zeng L, Shannon MC, Grieve CM: Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica. 2002, 127 (2): 235-245. 10.1023/A:1020262932277.
Article
CAS
Google Scholar
Flowers TJ, Colmer TD: Salinity tolerance in halophytes. New Phytol. 2008, 179 (4): 945-963. 10.1111/j.1469-8137.2008.02531.x. http://www.blackwell-synergy.com/doi/abs/10.1111/j.1469-8137.2008.02531.x.
Article
PubMed
CAS
Google Scholar
Moradi F, Ismail AM: Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot. 2007, 99 (6): 1161-1173. 10.1093/aob/mcm052. http://aob.oxfordjournals.org/content/99/6/1161.abstract.
Article
PubMed
CAS
PubMed Central
Google Scholar
Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK: The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta. 2009, 230: 119-134. 10.1007/s00425-009-0930-6.
Article
PubMed
CAS
Google Scholar
Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK: Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J Exp Bot. 2011, 62 (12): 4215-4228. 10.1093/jxb/err135.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ: Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ. 1999, 22 (5): 559-565. 10.1046/j.1365-3040.1999.00418.x. http://dx.doi.org/10.1046/j.1365-3040.1999.00418.x.
Article
CAS
Google Scholar
Zhou QY, Wang L, Cai X, Wang D, Hua XJ, Qu LQ, Lin JX, Chen T: Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings. J Plant Physiol. 2011, 168 (11): 1249-1255. 10.1016/j.jplph.2011.01.017.
Article
PubMed
CAS
Google Scholar
Yeo AR, Flowers TJ: Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Australian Journal of Plant Physiology. 1986, 13: 161-173. 10.1071/PP9860161.
Article
Google Scholar
Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G: RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. The Philippine Agricultural Scientist. 2002, 85: 68-76.
Google Scholar
Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY: QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet. 2004, 108 (2): 253-260. 10.1007/s00122-003-1421-y.
Article
PubMed
CAS
Google Scholar
Ahmadi N, Negrao S, Katsantonis D, Frouin J, Ploux J, Letourmy P, Droc G, Babo P, Trindade H, Bruschi G, Greco R, Oliveira M, Piffanelli P, Courtois B: Targeted association analysis identified japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theor Appl Genet. 2011, 123 (6): 881-895. 10.1007/s00122-011-1634-4. http://dx.doi.org/10.1007/s00122-011-1634-4.
Article
PubMed
CAS
Google Scholar
Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM: Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice. 2010, 3 (2–3): 148-160.
Article
Google Scholar
Ul Haq T, Gorham J, Akhtar J, Akhtar N, Steele K: Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Functional Plant Biology. 2010, 37 (7): 634-645. 10.1071/FP09247. http://dx.doi.org/10.1071/FP09247.
Article
Google Scholar
Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX: A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet. 2005, 37 (10): 1141-1146. 10.1038/ng1643. http://www.nature.com/ng/journal/v37/n10/full/ng1643.html.
Article
PubMed
CAS
Google Scholar
Platten J, Cotsaftis O, Berthomieu P, Bohnert H, Davenport R, Fairbairn D, Horie T, Leigh R, Lin HX, Luan S, Maser P, Pantoja O, Rodríguez-Navarro A, Schachtman D, Schroeder J, Sentenac H, Uozumi N, Very A, Zhu JK, Dennis E, Tester M: Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci. 2006, 11 (8): 372-374. 10.1016/j.tplants.2006.06.001. http://www.sciencedirect.com/science/article/B6TD1-4K9C5R4-1/2/4ea.
Article
PubMed
CAS
Google Scholar
Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R: HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 2007, 143 (4): 1918-1928. 10.1104/pp.106.093476. http://www.plantphysiol.org/cgi/content/abstract/pp.106.093476v1.
Article
PubMed
CAS
PubMed Central
Google Scholar
Genc Y, Oldach K, Verbyla A, Lott G, Hassan M, Tester M, Wallwork H, McDonald G: Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet. 2010, 121 (5): 877-894. 10.1007/s00122-010-1357-y. http://dx.doi.org/10.1007/s00122-010-1357-y.
Article
PubMed
CAS
Google Scholar
Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R: A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol. 2006, 142 (4): 1718-1727. 10.1104/pp.106.088864. http://www.plantphysiol.org/cgi/content/abstract/142/4/1718.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins NC: A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. J Exp Bot. 2011, 62 (3): 1201-1216. 10.1093/jxb/erq346.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gong J, Zheng X, Du B, Qian Q, Chen S, Zhu L, He P: Comparative study of QTLs for agronomic traits of rice (Oriza sativa L.) between salt stress and nonstress environment. Science in China Series C-Life Science. 2001, 44: 73-82. 10.1007/BF02882075. http://www.ncbi.nlm.nih.gov/pubmed/18763091.
Article
CAS
Google Scholar
Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY: Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breeding. 2007, 126: 43-46. 10.1111/j.1439-0523.2007.01265.x.
Article
Google Scholar
Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE: Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci. 2000, 78: 162-164. http://cs-test.ias.ac.in/cs/Downloads/download_pdf.php?titleid=id_078_02_0164_0169_0.
CAS
Google Scholar
Sabouri H, Rezai A, Moumeni A, Kavousi A, Katouzi M, Sabouri A: QTLs mapping of physiological traits related to salt tolerance in young rice seedlings. Biologia Plantarum. 2009, 53 (4): 657-662. 10.1007/s10535-009-0119-7. http://dx.doi.org/10.1007/s10535-009-0119-7.
Article
Google Scholar
Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T, Sato T: Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crop Res. 2004, 89: 85-95. 10.1016/j.fcr.2004.01.026. http://www.sciencedirect.com/science/article/B6T6M-4C605X8-2/2/de85a3af9889fed3254d8c56b5e2adc7.
Article
Google Scholar
Zang J, Sun Y, Wang Y, Yang J, Li F, Zhou Y, Zhu L, Jessica R, Mohammadhosein F, Xu J, Li Z: Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Sci China C Life Sci. 2008, 51 (7): 583-591. 10.1007/s11427-008-0081-1. http://dx.doi.org/10.1007/s11427-008-0081-1.
Article
PubMed
Google Scholar
Alam M, Stuchbury T, Naylor R, Rashid M: Effect of salinity on growth of some modern rice cultivars. Journal of Agronomy. 2004, 3: 1-10. http://scialert.net/abstract/?doi=ja.2004.1.10.
Article
Google Scholar
Asch F, Dingkuhn M, Dorffling K, Miezan K: Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica. 2000, 113 (2): 109-118. 10.1023/A:1003981313160.
Article
Google Scholar
Bhowmik SK, Titov S, Islam MM, Siddika A, Sultana S, Haque MDS: Phenotypic and genotypic screening of rice genotypes at seedling stage for salt tolerance. Afr J Biotechnol. 2009, 8 (23): 6490-6494.
CAS
Google Scholar
Cha-um S, Ashraf M, Kirdmanee C: Screening upland rice (Oryza sativa L. ssp indica) genotypes for salt-tolerance using multivariate cluster analysis. Afr J Biotechnol. 2010, 9 (30): 4731-4740.
CAS
Google Scholar
Lee KS, Choi WY, Ko JC, Kim TS, Gregorio GB: Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage. Planta. 2003, 216 (6): 1043-1046. http://dx.doi.org/10.1007/s00425-002-0958-3.
PubMed
CAS
Google Scholar
Mahmood A, Latif T, Khan MA: Effect of salinity on growth, yield and yield components in basmati rice germplasm. Pakistan Journal of Botany. 2009, 41 (6): 3035-3045.
Google Scholar
Awala SK, Nanhapo PI, Sakagami JI, Kanyomeka L, Iijima M: Differential salinity tolerance among Oryza glaberrima, Oryza sativa and their interspecies including NERICA. Plant Production Science. 2010, 13: 3-10. 10.1626/pps.13.3.
Article
Google Scholar
Lee KS, Senadhira D: Salinity tolerance in japonica rice (Oryza sativa L.). SABRAO Journal. 1996, 28: 11-17.
Google Scholar
Quijano-Guerta C, Kirk GJD: Tolerance of rice germplasm to salinity and other soil chemical stresses in tidal wetlands. Field Crop Res. 2002, 76 (2–3): 111-121. http://www.sciencedirect.com/science/article/B6T6M-45WFPSX-2/2/11b8ddfa983acbfc0e7649a4f9c0d927.
Article
Google Scholar
Genc Y, McDonald GK, Tester M: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. 2007, 30 (11): 1486-1498. 10.1111/j.1365-3040.2007.01726.x.
Article
PubMed
CAS
Google Scholar
Thomson M, Zhao K, Wright M, McNally K, Rey J, Tung CW, Reynolds A, Scheffler B, Eizenga G, McClung A, Kim H, Ismail A, de Ocampo M, Mojica C, Reveche M, Dilla-Ermita C, Mauleon R, Leung H, Bustamante C, McCouch S: High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Molecular Breeding. 2011, 29 (4): 1-12. http://dx.doi.org/10.1007/s11032-011-9663-x.
Google Scholar
Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S: Genetic structure and diversity in Oryza sativa L. Genetics. 2005, 169 (3): 1631-1638. http://www.genetics.org/cgi/content/abstract/169/3/1631http://www.genetics.org/cgi/reprint/169/3/1631.pdf.
Article
PubMed
CAS
PubMed Central
Google Scholar
McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Rätsch G, Buell CR, Leung H, Leach JE: Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proceedings of the National Academy of Sciences, USA. 2009, 106 (30): 12273-12278. 10.1073/pnas.0900992106. http://www.pnas.org/content/early/2009/07/10/0900992106.abstract.
Article
CAS
Google Scholar
Walia H, Wilson C, Zeng L, Ismail A, Condamine P, Close T: Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol. 2007, 63 (5): 609-623. 10.1007/s11103-006-9112-0. http://dx.doi.org/10.1007/s11103-006-9112-0.
Article
PubMed
CAS
PubMed Central
Google Scholar
Flowers TJ, Yeo AR: Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytol. 1981, 88 (2): 363-373. 10.1111/j.1469-8137.1981.tb01731.x. http://dx.doi.org/10.1111/j.1469-8137.1981.tb01731.x.
Article
CAS
Google Scholar
Garthwaite AJ, von Bothmer R, Colmer TD: Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. J Exp Bot. 2005, 56 (419): 2365-2378. 10.1093/jxb/eri229. http://jxb.oxfordjournals.org/cgi/content/abstract/56/419/2365.
Article
PubMed
CAS
Google Scholar
Qiu L, Wu D, Ali S, Cai S, Dai F, Jin X, Wu F, Zhang G: Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet. 2011, 122 (4): 695-703. 10.1007/s00122-010-1479-2. http://dx.doi.org/10.1007/s00122-010-1479-2.
Article
PubMed
CAS
Google Scholar
Dvorak J, Noaman MM, Goyal S, Gorham J: Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor Appl Genet. 1994, 87 (7): 872-877. 10.1007/BF00221141.
Article
PubMed
CAS
Google Scholar
Husain S, Munns R, Condon AG: Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Aust J Agr Res. 2003, 54: 589-597. 10.1071/AR03032.
Article
CAS
Google Scholar
Alberico GJ, Cramer GR: Is the salt tolerance of maize related to sodium exclusion? I. Preliminary screening of seven cultivars. Journal of Plant Nutrition. 1993, 16 (11): 2289-2303. 10.1080/01904169309364687.
Article
Google Scholar
Azevedo Neto AD, Prisco JT, Eneas Filho J, Lacerda CF, Silva JV, Costa PHA, Gomes Filho E: Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazilian Journal of Plant Physiology. 2004, 16: 31-38.
Article
Google Scholar
Azooz MM, Shaddad MA, Abdel-Latef AA: Leaf growth and K+/Na+ ratio as an indication of the salt tolerance of three sorghum cultivars grown under salinity stress and IAA treatment. Acta Agronomica Hungarica. 2004, 52 (3): 287-296. 10.1556/AAgr.52.2004.3.10.
Article
CAS
Google Scholar
Fortmeier R, Schubert S: Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant Cell Environ. 1995, 18 (9): 1041-1047. 10.1111/j.1365-3040.1995.tb00615.x. http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3040.1995.tb00615.x.
Article
CAS
Google Scholar
Fitzgerald TL, Waters DLE, Brooks LO, Henry RJ: Fragrance in rice (Oryza sativa) is associated with reduced yield under salt treatment. Environmental and Experimental Botany. 2010, 68 (3): 292-300. 10.1016/j.envexpbot.2010.01.001. http://www.sciencedirect.com/science/article/pii/S0098847210000067.
Article
CAS
Google Scholar
Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ: Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crop Res. 2002, 76 (2–3): 91-101. http://www.sciencedirect.com/science/article/B6T6M-45DF8P0-2/2/6170a2757a4d9b0003dbcc418213ab8c.
Article
Google Scholar
Kim SH, Bhat P, Cui X, Walia H, Xu J, Wanamaker S, Ismail A, Wilson C, Close T: Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array. BMC Plant Biol. 2009, 9: 65. 10.1186/1471-2229-9-65. http://www.biomedcentral.com/1471-2229/9/65.
Article
PubMed
PubMed Central
Google Scholar
Yoshida S, Forno DA, Cock JK, Gomez KA: Laboratory Manual for Physiological Studies of Rice. Manila: International Rice Research Institute; 1976.
Google Scholar
IRRI: Standard Evaluation System for Rice (SES). Manila: International Rice Research Institute; 2002. http://www.knowledgebank.irri.org/extension/index.php/ses.
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28 (10): 2731-2739. 10.1093/molbev/msr121.
Article
PubMed
CAS
PubMed Central
Google Scholar