Buléon A, Ball S, Planchot V, Colonna P: Starch granules: structure and biosynthesis. Int J Biol Macromol. 1998, 23: 85-112. 10.1016/S0141-8130(98)00040-3.
Article
PubMed
Google Scholar
Gidley MJ: Starch structure/function relationships: achievements and challenges. Starch: advances in structure and function. Edited by: Tina, et al. 2001, Royal Society of Chemistry (Great Britain). Food Chemistry Group, 1-7.
Chapter
Google Scholar
Manners DJ: Recent developments in our understanding of amylopectin structure. Carbohydr Polym. 1989, 11: 87-112. 10.1016/0144-8617(89)90018-0.
Article
Google Scholar
Boyer CD, Preiss J: Multiple forms of (1,4)-α-D-glucan-6-glucosyl transferase from developing Zea Mays L. kernels. Carbohydr Res. 1978, 61: 321-34. 10.1016/S0008-6215(00)84492-4.
Article
Google Scholar
Boyer CD, Preiss J: Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol. 1981, 67: 1141-5. 10.1104/pp.67.6.1141.
Article
PubMed
PubMed Central
Google Scholar
Gao M, Fisher DK, Kim KN, Shannon JC, Guiltinan MJ: Independent genetic control of maize starch-branching enzymes IIa and IIb-Isolation and characterization of a Sbe2a cDNA. Plant Physiol. 1997, 114: 69-78. 10.1104/pp.114.1.69.
Article
PubMed
PubMed Central
Google Scholar
Kim KN, Fisher DK, Gao M, Guiltinan MJ: Genomic organization and promoter activity of the maize Starch branching enzyme I gene. Gene. 1998, 216: 233-43. 10.1016/S0378-1119(98)00339-4.
Article
PubMed
Google Scholar
Kim KN, Gao M, Fisher DK, Guiltinan MJ: Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Mol Biol. 1999, 38: 945-56.
Article
Google Scholar
Burton RA, Bewley JD, Smith AM, Bhattacharyya MK, Tatge H, Ring S, Bull V, Hamilton WDO, Martin C: Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 1995, 7: 3-15. 10.1046/j.1365-313X.1995.07010003.x.
Article
PubMed
Google Scholar
Gao M, Fisher DK, Kim KN, Shannon JC, Guiltinan MJ: Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests isoform specialization. Plant Mol Biol. 1996, 30: 1223-32. 10.1007/BF00019554.
Article
PubMed
Google Scholar
Blauth SL, Yao Y, Klucinec JD, Shannon JC, Thompson DB, Guiltinan MJ: Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol. 2001, 125: 1396-405. 10.1104/pp.125.3.1396.
Article
PubMed
PubMed Central
Google Scholar
Rahman S, Regina A, Li Z, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abrahams S, Morell MK: Comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from wheat D genome donor Aegilops tauschii. Plant Physiol. 2001, 125: 1314-24. 10.1104/pp.125.3.1314.
Article
PubMed
PubMed Central
Google Scholar
Xu JH, Messing J: Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplication in grass species. Proc Natl Acad Sci. 2008, 105: 14330-35. 10.1073/pnas.0807026105.
Article
PubMed
PubMed Central
Google Scholar
Deschamps P, Moreau H, Worden AZ, Dauvillée D, Ball SG: Early Gene Duplication Within Chloroplastida and Its Correspondence With Relocation of Starch Metabolism to Chloroplasts. Genetics. 2008, 178: 2373-87. 10.1534/genetics.108.087205.
Article
PubMed
PubMed Central
Google Scholar
Guan HP, Preiss J: Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol. 1993, 102: 1269-73.
PubMed
PubMed Central
Google Scholar
Takeda Y, Guan HP, Preiss J: Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr Res. 1993, 240: 253-63.
Article
Google Scholar
Boyer CD, Preiss J: Properties of citrate-stimulated starch synthesis catalyzed by starch synthase I of developing maize kernels. Plant Physiol. 1979, 64: 1039-42. 10.1104/pp.64.6.1039.
Article
PubMed
PubMed Central
Google Scholar
Gao M, Wanat J, Stinard PS, James MG, Myers AM: Characterization of dull 1, a maize gene coding for a novel starch synthase. Plant Cell. 1998, 10: 339-412.
Article
Google Scholar
Beatty MK, Rahman A, Cao H, Woodman W, Lee M, Myers AM, James MG: Purification and molecular genetic characterization of ZPU1, a pullulanase-type starch-debranching enzyme from maize. Plant Physiol. 1999, 119: 255-66. 10.1104/pp.119.1.255.
Article
PubMed
PubMed Central
Google Scholar
Nishi A, Nakamura Y, Tanaka N, Satoh H: Biochemical and genetic effects of amylose-extender mutation in rice endosperm. Plant Physiol. 2001, 127: 459-72. 10.1104/pp.010127.
Article
PubMed
PubMed Central
Google Scholar
Colleoni C, Myers AM, James MG: One- and two-dimensional native PAGE activity gel analyses of maize endosperm proteins reveal functional interactions between specific starch metabolizing enzymes. J Appl Glycosci. 2003, 50: 207-12.
Article
Google Scholar
Dinges JR, Colleoni C, Myers AM, James MG: Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects. Plant Physiol. 2001, 125: 1406-18. 10.1104/pp.125.3.1406.
Article
PubMed
PubMed Central
Google Scholar
Dinges JR, Colleoni C, James MG, Myers AM: Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell. 2003, 15: 666-80. 10.1105/tpc.007575.
Article
PubMed
PubMed Central
Google Scholar
Seo BS, Kim S, Scott MP, Singletary GW, Wong KS, James MG, Myers AM: Functional interactions between heterologously expressed starch-branching enzymes of maize and the glycogen synthases of Brewer's yeast. Plant Physiol. 2002, 128: 1189-99. 10.1104/pp.010756.
Article
PubMed
PubMed Central
Google Scholar
Yao Y, Thompson DB, Guiltinan MJ: Starch biosynthesis in maize endosperm: in the absence of SBEIIb, the deficiency of SBEIIa leads to increased amylopectin branching. Presentation at. 2003, AACC conference, Portland, OR
Google Scholar
Yao Y, Thompson DB, Guiltinan MJ: Maize starch branching enzyme (SBE) isoforms and amylopectin structure: in the absence of SBEIIb, the future absence of SBEIa leads to increased branching. Plant Physiol. 2004, 106: 293-316.
Google Scholar
Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ: Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell. 2004, 16: 694-708. 10.1105/tpc.017400.
Article
PubMed
PubMed Central
Google Scholar
Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ: Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol. 2008, 146: 1878-91. 10.1104/pp.108.116244.
Article
PubMed
PubMed Central
Google Scholar
Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux JL, Buleon A, Haebel S, Ritte G, Steup M, Falcon L, Moreira D, Loffelhardt W, Nirmal RJ, Plancke C, d'Hulst C, Dauvillee D, Ball S: Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol. 2008, 25: 536-48. 10.1093/molbev/msm280.
Article
PubMed
Google Scholar
Hennen-Bierwagen TA, Liu F, Marsh R, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM: Starch biosynthetic enzymes from developing Zea mays endosperm associate in multisubunit complexes. Plant Physiol. 2008, 146: 1892-908. 10.1104/pp.108.116285.
Article
PubMed
PubMed Central
Google Scholar
Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM: Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol. 2009, 149: 1541-59. 10.1104/pp.109.135293.
Article
PubMed
PubMed Central
Google Scholar
Kötting O, Kossmann J, Zeeman SC, Lloyd JR: Regulation of starch metabolism: the age of enlightenment?. Current Opinion in Plant Biology. 2010, 13: 321-9.
Article
PubMed
Google Scholar
Liu F, Makhmoudova A, Lee EA, Wait R, Emes MJ, Tetlow IJ: The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts. J Exp Bot. 2009, 60: 4423-40. 10.1093/jxb/erp297.
Article
PubMed
Google Scholar
Garwood DL, Shannon JC, Creech RG: Starches of endosperms possessing different alleles at the amylose-extender locus in Zea mays L. Cereal Chem. 1976, 53: 355-64.
Google Scholar
Boyer CD, Daniels RR, Shannon JC: Starch granule (amyloplast) development in endosperm of several Zea mays L. genotypes affecting kernel polysaccharides. Amer J Bot. 1977, 64: 50-56. 10.2307/2441875.
Article
Google Scholar
Yandeau-Nelson MD, Laurens L, Shi Z, Xia H, Smith AM, Guiltinan MJ: Starch Branching Enzyme IIa is required for proper diurnal cycling of starch in leaves of Zea mays. Plant Physiology Online Open Access. 2011, [http://www.plantphysiol.org/content/early/2011/04/20/pp.111.174094.full.pdf+html]
Google Scholar
Blauth SL, Kim K, Klucinec JD, Shannon JC, Thompson DB, Guiltinan MJ: Identification of Mutator insertional mutants of starch branching enzyme 1 (sbe1) in Zea mays L. Plan Mol Bio. 2002, 48: 287-97. 10.1023/A:1013335217744.
Article
Google Scholar
Xia H: Structure and function of endosperm starch from maize mutants deficient in one or more starch-branching enzyme isoform activities. Ph.D. thesis. 2009, The Pennsylvania State University, University Park, PA
Google Scholar
Klucinec JD, Thompson DB: Note: Structure of amylopectins from ae-containing maize starches. Cereal Chem. 2002, 79: 19-23. 10.1094/CCHEM.2002.79.1.19.
Article
Google Scholar
Xia H, Thompson DB: Debranching of β-limit dextrins with isoamylase or pullulanse to explore the Branching Pattern of Amylopectins from Three Maize Genotypes. Cereal Chem. 2006, 83: 668-76. 10.1094/CC-83-0668.
Article
Google Scholar
Evans A, Thompson DB: Enzyme susceptibility of high-amylose starch precipitated from sodium hydroxide dispersions. Cereal Chem. 2008, 85: 480-7. 10.1094/CCHEM-85-4-0480.
Article
Google Scholar
Rees E: Effect of a heat-moisture treatment on alpha-amylase susceptibility of high amylose maize starches. MS thesis. 2008, The Pennsylvania State University, University Park, PA
Google Scholar
Hizukuri S: Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res. 1986, 147: 342-7. 10.1016/S0008-6215(00)90643-8.
Article
Google Scholar
Lee EYC: The action of sweet potato β-amylase on glycogen and amylopectin: formation of a novel limit dextrin. Arch Biochem Biophys. 1971, 146: 488-92. 10.1016/0003-9861(71)90153-6.
Article
PubMed
Google Scholar
Takeda Y, Hizukuri S, Takeda C, Suzuki A: Structures of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohydr Res. 1987, 165: 139-45. 10.1016/0008-6215(87)80089-7.
Article
Google Scholar
Ao Z, Simsek S, Zhang G, Venkatachalam M, Reuhs BL, Hamaker BR: Starch with slow digestion property produced by altering its chain-length, branch density and crystalline structure. J Agri Food Chem. 2007, 55: 4540-7. 10.1021/jf063123x.
Article
Google Scholar
Li JH, Thompson DB, Guiltinan M: Mutation of the maize sbe1a and ae genes alters morphology and physical behavior of wx-type endosperm starch granules. Carbohydr Res. 2007, 342: 2619-27. 10.1016/j.carres.2007.07.019.
Article
PubMed
Google Scholar
Zhang G, Ao Z, Hamaker BR: Slow digestion property of native cereal starches. Biomacromolecules. 2006, 7: 3252-8. 10.1021/bm060342i.
Article
PubMed
Google Scholar
Leach HW, Schoch TJ: Structure of the starch granule. II. Action of various amylase on granular starches. Cereal Chem. 1961, 38: 34-46.
Google Scholar
Valetudie JC, Colonna P, Bouchet B, Gallant DJ: Hydrolysis of tropical tuber starches by bacterial and pancreatic α-amylases. Starch/Stärke. 1993, 45: 270-6.
Article
Google Scholar
Helbert W, Schulein M, Henrissat B: Electron microscopic investigation of the diffusion of bacillus licheniformis α-amylase into corn starch granules. Int J Biol Macromol. 1996, 19: 165-9. 10.1016/0141-8130(96)01123-3.
Article
PubMed
Google Scholar
Gallant DJ, Bouchet B, Buleon A, Perez S: Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur J Clin Nutr. 1992, 46: S3-S16.
PubMed
Google Scholar
Planchot V, Colonna P, Gallant DJ, Bouchet B: Extensive degradation of native starch granules by alpha-amylase from Apergillus fumigatus. J Cereal Sci. 1995, 21: 163-71. 10.1016/0733-5210(95)90032-2.
Article
Google Scholar
Evans A, Thompson DB: Resistance to α-Amylase digestion in four native high-amylose maize starches. Cereal Chem. 2004, 81: 31-7. 10.1094/CCHEM.2004.81.1.31.
Article
Google Scholar
Smith AM, Zeeman SC, Smith SM: Starch Degradation. Annu Rev Plant Biol. 2005, 56: 73-98. 10.1146/annurev.arplant.56.032604.144257.
Article
PubMed
Google Scholar
Grimaud F, Rogniaux H, James MG, Myers AM, Planchot V: Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. J Exp Bot. 2008, 59: 3395-406. 10.1093/jxb/ern198.
Article
PubMed
PubMed Central
Google Scholar
Blennow A, Hansen M, Schulz A, Jørgensen K, Donald AM, Sanderson J: The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy. J Struct Biol. 2003, 143: 229-41. 10.1016/j.jsb.2003.08.009.
Article
PubMed
Google Scholar
Blennow A, Wischmann B, Houborg K, Ahmt T, Jørgensen K, Engelsen SB, Bandsholm O, Poulsen P: Structure function relationships of transgenic starches with engineered phosphate substitution and starch branching. Int J Biol Macromol. 2005, 36: 159-68. 10.1016/j.ijbiomac.2005.05.006.
Article
PubMed
Google Scholar
Thompson DB: On the non-random nature of amylopectin branching. Carbohydr Polym. 2000, 40: 223-39.
Article
Google Scholar
Gingerich DJ, Hanada K, Shiu SH, Vierstra RD: Large-scale, lineage-specific expansion of a bric-a-brac/tramtrack/broad complex ubiquitin-ligase gene family in rice. Plant Cell. 2007, 19: 2329-48. 10.1105/tpc.107.051300.
Article
PubMed
PubMed Central
Google Scholar
Prokhnevsky AI, Peremyslov VV, Dolja VV: Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc Natl Acad Sci. 2008, 105: 19744-9. 10.1073/pnas.0810730105.
Article
PubMed
PubMed Central
Google Scholar
Saleh A, Alvarez-Venegasm R, Yilmaz M, Le O, Hou G, Sadder M, Al-Abdallat A, Xia Y, Lu G, Ladunga I, Avramova Z: The Highly Similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell. 2008, 20: 568-79. 10.1105/tpc.107.056614.
Article
PubMed
PubMed Central
Google Scholar
Hedges SB, Dudley J, Kumar S: TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics. 2006, 22: 2971-2. 10.1093/bioinformatics/btl505.
Article
PubMed
Google Scholar
Chaw SM, Chang CC, Chen HL, Li WH: Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol. 2004, 58: 424-41. 10.1007/s00239-003-2564-9.
Article
PubMed
Google Scholar
Dumeza S, Wattebleda F, Dauvilleea D, Delvallea D, Planchotb V, Ball SG, D'Hulsta C: Mutants of Arabidopsis Lacking Starch Branching Enzyme II Substitute Plastidial Starch Synthesis by Cytoplasmic Maltose Accumulation. Plant Cell. 2006, 18: 2694-709. 10.1105/tpc.105.037671.
Article
Google Scholar
Yao Y, Guiltinan MJ, Shannon JC, Thompson DB: Single kernel sampling method for maize starch analysis while maintaining kernel vitality. Cereal Chem. 2002, 79: 757-762. 10.1094/CCHEM.2002.79.6.757.
Article
Google Scholar
Klucinec JD, Thompson DB: Fractionation of high amylose maize starches by differential alcohol precipitation and chromatograph of the fractions. Cereal Chem. 1998, 75: 887-96. 10.1094/CCHEM.1998.75.6.887.
Article
Google Scholar
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F: Colorimetric method for determination of sugars and related substances. Anal Chem. 1956, 28: 350-6. 10.1021/ac60111a017.
Article
Google Scholar
Comments
View archived comments (1)