Prasanna V, Prabha TN, Tharanathan RN: Fruit ripening phenomena--an overview. Crit Rev Food Sci Nutr. 2007, 47 (1): 1-19. 10.1080/10408390600976841.
Article
PubMed
Google Scholar
Giovannoni J: Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol. 2001, 52: 725-749. 10.1146/annurev.arplant.52.1.725.
Article
PubMed
Google Scholar
Moore S, Vrebalov J, Payton P, Giovannoni J: Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot. 2002, 53 (377): 2023-2030. 10.1093/jxb/erf057.
Article
PubMed
Google Scholar
Tigchelaar E, McGlasson W, Buescher R: Genetic regulation of tomato fruit ripening. HortScience. 1978, 13: 508-513.
Google Scholar
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J: A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science. 2002, 296 (5566): 343-346. 10.1126/science.1068181.
Article
PubMed
Google Scholar
Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T: DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J. 2008, 55 (2): 212-223. 10.1111/j.1365-313X.2008.03491.x.
Article
PubMed
Google Scholar
Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A: Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 1998, 118 (4): 1295-1305. 10.1104/pp.118.4.1295.
Article
PubMed
PubMed Central
Google Scholar
Barry CS, Llop-Tous MI, Grierson D: The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 2000, 123 (3): 979-986. 10.1104/pp.123.3.979.
Article
PubMed
PubMed Central
Google Scholar
Yokotani N, Nakano R, Imanishi S, Nagata M, Inaba A, Kubo Y: Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J Exp Bot. 2009, 60 (12): 3433-3442. 10.1093/jxb/erp185.
Article
PubMed
PubMed Central
Google Scholar
Smith CJ, Watson CF, Morris PC, Bird CR, Seymour GB, Gray JE, Arnold C, Tucker GA, Schuch W, Harding S, et al: Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol Biol. 1990, 14 (3): 369-379. 10.1007/BF00028773.
Article
PubMed
Google Scholar
Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schuch W, Grierson D: Antisense RNA inhibition of polygalacturonase gene-expression in transgenic tomatoes. Nature. 1988, 334 (6184): 724-726. 10.1038/334724a0.
Article
Google Scholar
Smith DL, Abbott JA, Gross KC: Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiol. 2002, 129 (4): 1755-1762. 10.1104/pp.011025.
Article
PubMed
PubMed Central
Google Scholar
Smith DL, Starrett DA, Gross KC: A gene coding for tomato fruit β-galactosidase II is expressed during fruit ripening. Cloning, characterization, and expression pattern. Plant Physiol. 1998, 117 (2): 417-423. 10.1104/pp.117.2.417.
Article
PubMed
PubMed Central
Google Scholar
Carrington CMS, Vendrell M, Dominguez-Puigjaner E: Characterisation of an endo-(1,4)-β-mannanase (LeMAN4) expressed in ripening tomato fruit. Plant Sci. 2002, 163 (3): 599-606. 10.1016/S0168-9452(02)00167-X.
Article
Google Scholar
Wang A, Li J, Zhang B, Xu X, Bewley JD: Expression and location of endo-β-mannanase during the ripening of tomato fruit, and the relationship between its activity and softening. J Plant Physiol. 2009, 166 (15): 1672-1684. 10.1016/j.jplph.2009.04.008.
Article
PubMed
Google Scholar
Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P: Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell. 1999, 11 (11): 2203-2216. 10.1105/tpc.11.11.2203.
Article
PubMed
PubMed Central
Google Scholar
Brummell DA, Harpster MH, Dunsmuir P: Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol Biol. 1999, 39 (1): 161-169. 10.1023/A:1006130018931.
Article
PubMed
Google Scholar
Cosgrove DJ, Bedinger P, Durachko DM: Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA. 1997, 94 (12): 6559-6564. 10.1073/pnas.94.12.6559.
Article
PubMed
PubMed Central
Google Scholar
Rose JK, Lee HH, Bennett AB: Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA. 1997, 94 (11): 5955-5960. 10.1073/pnas.94.11.5955.
Article
PubMed
PubMed Central
Google Scholar
Bartley GE, Viitanen PV, Bacot KO, Scolnik PA: A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. J Biol Chem. 1992, 267 (8): 5036-5039.
PubMed
Google Scholar
Fray RG, Grierson D: Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol. 1993, 22 (4): 589-602. 10.1007/BF00047400.
Article
PubMed
Google Scholar
Elliott KJ, Butler WO, Dickinson CD, Konno Y, Vedvick TS, Fitzmaurice L, Mirkov TE: Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol Biol. 1993, 21 (3): 515-524. 10.1007/BF00028808.
Article
PubMed
Google Scholar
Kitagawa M, Moriyama T, Ito H, Ozasa S, Adachi A, Yasuda J, Ookura T, Inakuma T, Kasumi T, Ishiguro Y, et al: Reduction of allergenic proteins by the effect of the ripening inhibitor (rin) mutant gene in an F1 hybrid of the rin mutant tomato. Biosci Biotechnol Biochem. 2006, 70 (5): 1227-1233. 10.1271/bbb.70.1227.
Article
PubMed
Google Scholar
Hecht A, Grunstein M: Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol. 1999, 304: 399-414. full_text.
Article
PubMed
Google Scholar
Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R: Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development. 2005, 132 (3): 429-438. 10.1242/dev.01600.
Article
PubMed
Google Scholar
Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE: Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell. 2009, 21 (9): 2563-2577. 10.1105/tpc.109.068890.
Article
PubMed
PubMed Central
Google Scholar
Kaufmann K, Muino JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC: Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 2009, 7 (4): e1000090-10.1371/journal.pbio.1000090.
Article
PubMed
PubMed Central
Google Scholar
Bourgault R, Bewley JD: Variation in its C-terminal amino acids determines whether endo-β-mannanase is active or inactive in ripening tomato fruits of different cultivars. Plant Physiol. 2002, 130 (3): 1254-1262. 10.1104/pp.011890.
Article
PubMed
PubMed Central
Google Scholar
Kitagawa M, Ito H, Shiina T, Nakamura N, Inakuma T, Kasumi T, Ishiguro Y, Yabe K, Ito Y: Characterization of tomato fruit ripening and analysis of gene expression in F-1 hybrids of the ripening inhibitor (rin) mutant. Physiol Plantarum. 2005, 123 (3): 331-338. 10.1111/j.1399-3054.2005.00460.x.
Article
Google Scholar
Treisman R: Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell. 1986, 46 (4): 567-574. 10.1016/0092-8674(86)90882-2.
Article
PubMed
Google Scholar
Pollock R, Treisman R: Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 1991, 5 (12A): 2327-2341. 10.1101/gad.5.12a.2327.
Article
PubMed
Google Scholar
Vrebalov J, Pan IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, et al: Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell. 2009, 21 (10): 3041-3062. 10.1105/tpc.109.066936.
Article
PubMed
PubMed Central
Google Scholar
Blume B, Barry CS, Hamilton AJ, Bouzayen M, Grierson D: Identification of transposon-like elements in non-coding regions of tomato ACC oxidase genes. Mol Gen Genet. 1997, 254 (3): 297-303. 10.1007/s004380050419.
Article
PubMed
Google Scholar
Theissen G, Saedler H: Plant biology. Floral quartets. Nature. 2001, 409 (6819): 469-471. 10.1038/35054172.
Article
PubMed
Google Scholar
de Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, Angenent GC, Immink RG: A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J. 2006, 47 (6): 934-946. 10.1111/j.1365-313X.2006.02846.x.
Article
PubMed
Google Scholar
Egea-Cortines M, Saedler H, Sommer H: Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 1999, 18 (19): 5370-5379. 10.1093/emboj/18.19.5370.
Article
PubMed
PubMed Central
Google Scholar
Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L: Interaction study of MADS-domain proteins in tomato. J Exp Bot. 2008, 59 (8): 2253-2265. 10.1093/jxb/ern094.
Article
PubMed
Google Scholar
Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF: Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol. 2006, 23 (11): 2245-2258. 10.1093/molbev/msl095.
Article
PubMed
Google Scholar
Honma T, Goto K: Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature. 2001, 409 (6819): 525-529. 10.1038/35054083.
Article
PubMed
Google Scholar
Goto K, Meyerowitz EM: Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 1994, 8 (13): 1548-1560. 10.1101/gad.8.13.1548.
Article
PubMed
Google Scholar
Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF: Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development. 1998, 125 (9): 1711-1721.
PubMed
Google Scholar
Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lonnig WE, Saedler H, Sommer H: Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 1992, 11 (1): 251-263.
PubMed
PubMed Central
Google Scholar
Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A: TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J. 2009, 60 (6): 1081-1095. 10.1111/j.1365-313X.2009.04064.x.
Article
PubMed
Google Scholar
Kende H: Ethylene Biosynthesis. Annu Rev Plant Phys. 1993, 44: 283-307. 10.1146/annurev.pp.44.060193.001435.
Article
Google Scholar
Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D: A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J. 2008, 55 (2): 301-310. 10.1111/j.1365-313X.2008.03505.x.
Article
PubMed
PubMed Central
Google Scholar
Montgomery J, Pollard V, Deikman J, Fischer RL: Positive and negative regulatory regions control the spatial distribution of polygalacturonase transcription in tomato fruit pericarp. Plant Cell. 1993, 5 (9): 1049-1062. 10.1105/tpc.5.9.1049.
Article
PubMed
PubMed Central
Google Scholar
Nicholass FJ, Smith CJ, Schuch W, Bird CR, Grierson D: High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions. Plant Mol Biol. 1995, 28 (3): 423-435. 10.1007/BF00020391.
Article
PubMed
Google Scholar
Sitrit Y, Bennett AB: Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene: A Re-examination. Plant Physiol. 1998, 116 (3): 1145-1150. 10.1104/pp.116.3.1145.
Article
PubMed
PubMed Central
Google Scholar
Oeller PW, Lu MW, Taylor LP, Pike DA, Theologis A: Reversible inhibition of tomato fruit senescence by antisense RNA. Science. 1991, 254 (5030): 437-439. 10.1126/science.1925603.
Article
PubMed
Google Scholar
Giovannoni JJ, DellaPenna D, Bennett AB, Fischer RL: Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell. 1989, 1 (1): 53-63. 10.1105/tpc.1.1.53.
Article
PubMed
PubMed Central
Google Scholar
Powell AL, Kalamaki MS, Kurien PA, Gurrieri S, Bennett AB: Simultaneous transgenic suppression of LePG and LeExp1 influences fruit texture and juice viscosity in a fresh market tomato variety. J Agric Food Chem. 2003, 51 (25): 7450-7455. 10.1021/jf034165d.
Article
PubMed
Google Scholar
Collin V, Lamkemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff DB, Dietz KJ, Issakidis-Bourguet E: Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol. 2004, 136 (4): 4088-4095. 10.1104/pp.104.052233.
Article
PubMed
PubMed Central
Google Scholar
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I: The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot. 2006, 57 (8): 1697-1709. 10.1093/jxb/erj160.
Article
PubMed
Google Scholar
Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M: Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J. 2005, 41 (1): 31-42. 10.1111/j.1365-313X.2004.02271.x.
Article
PubMed
Google Scholar
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, et al: Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J. 2006, 45 (6): 968-981. 10.1111/j.1365-313X.2006.02665.x.
Article
PubMed
Google Scholar
Barski A, Zhao K: Genomic location analysis by ChIP-Seq. J Cell Biochem. 2009, 107 (1): 11-18. 10.1002/jcb.22077.
Article
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed
PubMed Central
Google Scholar
Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000, 16 (6): 276-277. 10.1016/S0168-9525(00)02024-2.
Article
PubMed
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009, 55 (4): 611-622. 10.1373/clinchem.2008.112797.
Article
PubMed
Google Scholar
Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W: A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res. 1998, 8 (9): 967-974.
PubMed
PubMed Central
Google Scholar
Salamov AA, Solovyev VV: Ab initio gene finding in Drosophila genomic DNA. Genome Res. 2000, 10 (4): 516-522. 10.1101/gr.10.4.516.
Article
PubMed
PubMed Central
Google Scholar
Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA: Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 2008, 8: 131-10.1186/1471-2229-8-131.
Article
PubMed
PubMed Central
Google Scholar