Sree KS, Bog M, Appenroth KJ. Taxonomy of duckweeds (Lemnaceae), potential new crop plants. Emirates J Food Agric. 2016;28:291–302.
Article
Google Scholar
Hillman WS. The Lemnaceae, or duckweeds: a review of the descriptive and experimental literature. Bot Rev. 1961;27:221–87.
Article
CAS
Google Scholar
Bergmann BA, Cheng J, Classen J, Stomp AM. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresour Technol. 2000;73:13–20.
Article
CAS
Google Scholar
Peeters ETHM, van Zuidam JP, van Zuidam BG, Van Nes EH, Kosten S, Heuts PGM, et al. Changing weather conditions and floating plants in temperate drainage ditches. J Appl Ecol. 2013;50:585–93.
Article
Google Scholar
Parabel L. 2021. https://www.parabel.com/lentein/. Accessed 23 Aug 2021.
Appenroth KJ, Sree KS, Böhm V, Hammann S, Vetter W, Leiterer M, et al. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem. 2017;217:266–73.
Article
CAS
PubMed
Google Scholar
Shen N, Wang Q, Zhu J, Qin Y, Liao S, Li Y, et al. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137. Bioresour Technol. 2016;211:307–12.
Article
CAS
PubMed
Google Scholar
Marín CMD-C, Oron G. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters. Water Res. 2007;41:4579–84.
Article
Google Scholar
Ya VB. Aquatic plants of the far east of Russia: a review on their use in medicine, pharmacological activity. Bangladesh J Med Sci. 2015;14:9–13.
Article
Google Scholar
Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ. Relative in vitro growth rates of duckweeds (Lemnaceae) - the most rapidly growing higher plants. Plant Biol. 2015;17:33–41.
Article
PubMed
Google Scholar
Baek G, Saeed M, Choi H-K. Duckweeds: their utilization, metabolites and cultivation. Appl Biol Chem. 2021;64:73.
Article
PubMed Central
PubMed
Google Scholar
Back K. Melatonin metabolism, signaling and possible roles in plants. Plant J. 2021;105:376–91.
Article
CAS
PubMed
Google Scholar
Murch SJ, Erland LAE. A systematic review of melatonin in plants: an example of evolution of literature. Front Plant Sci. 2021;12:683047.
Article
PubMed Central
PubMed
Google Scholar
Wei J, Li DX, Zhang J-R, Shan C, Rengel Z, Song Z-B, et al. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res. 2018;65:e12500.
Article
PubMed
Google Scholar
Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res. 2012;53:279–88.
Article
CAS
PubMed
Google Scholar
Zhang H, Wang L, Shi K, Shan D, Zhu Y, Wang C, et al. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light signal. J Pineal Res. 2019;66:e12551.
Article
PubMed
Google Scholar
Reiter RJ, Tan DX, Burkhardt S, Manchester LC. Melatonin in plants. Nutr Rev. 2001;59:286–90.
Article
CAS
PubMed
Google Scholar
Khan A, Numan M, Khan AL, Lee IJ, Imran M, Asaf S, Al-Harrasi A. Melatonin: awakening the defense mechanisms during plant oxidative stress. Plants (Basel). 2020;9:407.
Article
CAS
PubMed
Google Scholar
Farouk S, AL-Huqail AA. Sustainable biochar and/or melatonin improve salinity tolerance in borage plants by modulating osmotic adjustment, antioxidants, and ion homeostasis. Plants (Basel). 2022;11:765.
Article
CAS
PubMed
Google Scholar
Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51:1–16.
Article
CAS
PubMed
Google Scholar
Liu N, Jin Z, Wang S, Gong B, Wen D, Wang X, et al. Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato. Sci Hortic (Amsterdam). 2015;181:18–25.
Article
CAS
Google Scholar
León J, Acuña-Castroviejo D, Escames G, Tan D-X, Reiter RJ. Melatonin mitigates mitochondrial malfunction. J Pineal Res. 2005;38:1–9.
Article
PubMed
Google Scholar
Arnao MB, Hernández-Ruiz J. Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol. 2021;23:7–19.
Article
CAS
PubMed
Google Scholar
Farouk S, Al-Amri SM. Exogenous melatonin-mediated modulation of arsenic tolerance with improved accretion of secondary metabolite production, activating antioxidant capacity and improved chloroplast ultrastructure in rosemary herb. Ecotoxicol Environ Saf. 2019;180:333–47.
Article
CAS
PubMed
Google Scholar
Fan J, Xie Y, Zhang Z, Chen L. Melatonin: a multifunctional factor in plants. Int J Mol Sci. 2018;19:1528.
Article
PubMed Central
PubMed
Google Scholar
Altaf MA, Shahid R, Ren MX, Altaf MM, Khan LU, Shahid S, et al. Melatonin alleviates salt damage in tomato seedling: a root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis. Sci Hortic. 2021;285:110145.
Article
CAS
Google Scholar
Hassan MU, Mahmood A, Awan MI, Maqbool R, Aamer M, Alhaithloul HAS, et al. Melatonin-induced protection against plant abiotic stress: mechanisms and prospects. Front Plant Sci. 2022;13:902694.
Article
PubMed Central
PubMed
Google Scholar
Jahan MS, Shu S, Wang Y. Chen Z, He M, Tao M, et al. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol. 2019;19:414.
Article
PubMed Central
PubMed
Google Scholar
Jahan MS, Guo S, Sun J, Shu S, Wang Y, El-Yazied AA, et al. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiol Biochem. 2021;167:309–20.
Article
CAS
PubMed
Google Scholar
Jahan MS, Shu S, Wang Y, Hasan MM, El-Yazied AA, Alabdallah NM, et al. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways. Front Plant Sci. 2021;12:650955.
Article
PubMed Central
PubMed
Google Scholar
Parthasarathy A, Savka MA, Hudson AO. The synthesis and role of β-alanine in plants. Front Plant Sci. 2019;10:921.
Article
PubMed Central
PubMed
Google Scholar
Sun Y-L, Hong S-K. Effects of citric acid as an important component of the responses to saline and alkaline stress in the halophyte Leymus chinensis (trin.). Plant Growth Regul. 2011;64:129–39.
Article
CAS
Google Scholar
Ranjan A, Pandey N, Lakhwani D, Dubey NK, Pathre UV, Sawant SV. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genomics. 2012;13:680.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bethke PC, Sabba R, Bussan AJ. Tuber water and pressure potentials decrease and sucrose contents increase in response to moderate drought and heat stress. Am J Potato Res. 2009;86:519–32.
Article
Google Scholar
Shi D-C, Yin S-J, Yang G-H, Zhao K-F. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Bot Sin. 2002;44:537–40.
CAS
Google Scholar
Baghizadeh A, Ghorbanli M, Haj RM, Mozafarih H. Evaluation of interaction effect of drought stress with ascorbate and salicylic acid on some of physiological and biochemical parameters in Okra (Hibiscus esculentus L.). Res J Biol Sci. 2009;4:380–7.
Google Scholar
Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, et al. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol. 2018;220:115–27.
Article
CAS
PubMed
Google Scholar
Erland LAE, Turi CE, Saxena PK. Serotonin: an ancient molecule and an important regulator of plant processes. Biotechnol Adv. 2016;34:1347–61.
Article
CAS
PubMed
Google Scholar
Murch SJ, Campbell SSB, Saxena PK. The role of serotonin and melatonin in plant morphogenesis: regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John’s wort (Hypericum perforatum L.). In Vitr Cell Dev Biol - Plant. 2001;37:786–93.
Article
CAS
Google Scholar
Murch SJ, Alan AR, Cao J, Saxena PK. Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res. 2009;47:277–83.
Article
CAS
PubMed
Google Scholar
Kusano M, Fukushima A, Redestig H, Saito K. Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot. 2011;62:1439–53.
Article
CAS
PubMed
Google Scholar
Springsteen G, Yerabolu JR, Nelson J, Rhea CJ, Krishnamurthy R. Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat Commun. 2018;9:91.
Article
PubMed Central
PubMed
Google Scholar
Xie T, Gu W, Wang M, Zhang L, Li C, Li W, et al. Exogenous 2-(3,4-dichlorophenoxy) triethylamine ameliorates the soil drought effect on nitrogen metabolism in maize during the pre-female inflorescence emergence stage. BMC Plant Biol. 2019;19:107.
Article
PubMed Central
PubMed
Google Scholar
Alfosea-Simón M, Simón-Grao S, Zavala-Gonzalez EA, Cámara-Zapata JM, Simón I, Martínez-Nicolás JJ, et al. Physiological, nutritional and metabolomic responses of tomato plants after the foliar application of amino acids aspartic acid, glutamic acid and alanine. Front Plant Sci. 2021;11:581234.
Article
PubMed Central
PubMed
Google Scholar
Natera SHA, Hill CB, Rupasinghe TWT, Roessner U. Salt-stress induced alterations in the root lipidome of two barley genotypes with contrasting responses to salinity. Funct Plant Biol. 2016;43:207–19.
Article
CAS
PubMed
Google Scholar
Sosa Alderete LG, Flor S, Lucangioli S, Agostini E. Impact of phenol on the glycerophospholipid turnover and potential role of circadian clock in the plant response against this pollutant in tobacco hairy roots. Plant Physiol Biochem. 2020;151:411–20.
Article
CAS
PubMed
Google Scholar
Downes CP, Gray A, Lucocq JM. Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol. 2005;15:259–68.
Article
CAS
PubMed
Google Scholar
Perera IY, Heilmann I, Boss WF. Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci USA. 1999;96:5838–43.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, et al. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol. 1999;145:317–30.
Article
CAS
PubMed Central
PubMed
Google Scholar
Stevenson JM, Perera IY, Heilmann I, Persson S, Boss WF. Inositol signaling and plant growth. Trends Plant Sci. 2000;5:252–8.
Article
CAS
PubMed
Google Scholar
Yu Y, Wang A, Li X, Kou M, Wang W, Chen X, et al. Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+ –ATPase activity and K+/Na + homeostasis in sweet potato. Front Plant Sci. 2018;9:256.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dörmann P, Benning C. Galactolipids rule in seed plants. Trends Plant Sci. 2002;7:112–8.
Article
PubMed
Google Scholar
Basnet R, Zhang J, Hussain N, Shu Q. Characterization and mutational analysis of a monogalactosyldiacylglycerol synthase gene OsMGD2 in rice. Front Plant Sci. 2019;10:992.
Article
PubMed Central
PubMed
Google Scholar
Nußberger S, Dörr K, Wang DN, Kühlbrandt W. Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol. 1993;234:347–56.
Article
PubMed
Google Scholar
Mizusawa N, Wada H. The role of lipids in photosystem II. Biochim Biophys Acta - Bioenerg. 2012;1817:194–208.
Article
CAS
Google Scholar
Sato N. Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J Plant Res. 2004;117:495–505.
Article
CAS
PubMed
Google Scholar
Sato N, Aoki M, Maru Y, Sonoike K, Minoda A, Tsuzuki M. Involvement of sulfoquinovosyl diacylglycerol in the structural integrity and heat-tolerance of photosystem II. Planta. 2003;217:245–51.
Article
CAS
PubMed
Google Scholar
Tan D-X, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, et al. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot. 2012;63:577–97.
Article
CAS
PubMed
Google Scholar
Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, et al. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci Hortic (Amsterdam). 2019;246:34–43.
Article
CAS
Google Scholar
Wei W, Li Q-T, Chu Y-N, Reiter RJ, Yu X-M, Zhu D-H, et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot. 2015;66:695–707.
Article
CAS
PubMed
Google Scholar
Zhao H, Su T, Huo L, Wei H, Jiang Y, Xu L, et al. Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case. J Pineal Res. 2015;59:255–66.
Article
CAS
PubMed
Google Scholar
Baker WL, Baker EL, Coleman CI. The effect of plant sterols or stanols on lipid parameters in patients with type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract. 2009;84:e33–7.
Article
CAS
PubMed
Google Scholar
Park C, Moon DO, Rhu CH, Choi BT, Lee WH, Kim G-Y, et al. β-Sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol Pharm Bull. 2007;30:1317–23.
Article
CAS
PubMed
Google Scholar
Kim JY, Kim HY, Jeon JY, Kim DM, Zhou Y, Lee JS, et al. Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture. PLoS ONE. 2017;12:e0187622.
Article
PubMed Central
PubMed
Google Scholar
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49:1137–46.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kim SH, Lim SR, Hong SJ, Cho BK, Lee H, Lee CG, et al. Effect of ethephon as an ethylene-releasing compound on the metabolic profile of Chlorella vulgaris. J Agric Food Chem. 2016;64:4807–16.
Article
CAS
PubMed
Google Scholar