FAO. Crops prospect and food situation. 2021. http://www.fao.org/faostat/en/.
Google Scholar
CIMMYT. Nutrition, health and food security Centro Internacional de Mejoramiento de Maiz y Trigo. 2021. https://www.cimmyt.org/news/nutrition-health-food-security/.
Google Scholar
Aramburu Merlos F, Monzon JP, Mercau JL, Taboada M, Andrade FH, Hall AJ, et al. Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Res. 2015;184:145–54.
Article
Google Scholar
Hall AJ, Rebella CM, Ghersa CM, Culot JP. Field-crop systems of the Pampas. Ecosyst World. 1992;18:413–50.
Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 2019;3:430.
Article
PubMed
Google Scholar
Simón MR, Börner A, Struik PC. Fungal wheat diseases: etiology, breeding, and integrated management. Front Plant Sci. 2021;12:498.
Article
Google Scholar
Chen W, Wellings C, Chen X, Kang Z, Liu T. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol. 2014;15:433–46.
Article
PubMed Central
PubMed
Google Scholar
Wellings CR. Global status of stripe rust: a review of historical and current threats. Euphytica. 2011;179:129–41.
Article
Google Scholar
Tehseen M, Tonk F, Tosun M, Randhawa H, Kurtulus E, Ozseven I, et al. QTL mapping of adult plant resistance to stripe rust in a doubled haploid wheat population. Front Genet. 2022;13:900558.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chen X. Epidemiology and control of stripe rust [Puccinia striiformis f. sp tritici] on wheat. Can J Plant Pathol. 2005;27:314–37.
Article
Google Scholar
Chen X, Kang Z. Introduction: history of research, symptoms, taxonomy of the pathogen, host range, distribution, and impact of stripe rust. In: Chen X, Kang Z, editors. Stripe rust. Dordrecht: Springer; 2017. p. 1–33.
Stubbs R. Stripe rust. In: Roelfs AP, Bushnell WR, editors. Cereal rusts. Vol. II. Disease, distribution, epidemiology, and control. New York: Academic Press; 1985. p. 61–101.
Chapter
Google Scholar
Campos P, Formento N, Couretot L, Alberione E. Aparición epifítica de roya amarilla del trigo en la región pampeana argentina. 2016.
Google Scholar
Carmona M, Sautua F. Epidemias de roya amarilla del trigo. nuevas razas en el mundo, monitoreo y decisión de uso de fungicidas. Agr Amb. 2018;38:37–58.
Google Scholar
Campos P. Estado de Situación de las royas de trigo en Argentina. Campaña 2019. 2020. https://inta.gob.ar/sites/default/files/inta_royastrigo19_act20_campos.pdf.
Google Scholar
Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C, Thomas J, et al. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 2015;16:1–15.
Article
Google Scholar
Losert D, Maurer HP, Leiser WL, Würschum T. Defeating the Warrior: genetic architecture of triticale resistance against a novel aggressive yellow rust race. Theor Appl Genet. 2017;130:685–96.
Article
PubMed
Google Scholar
Chen X. High-temperature adult-plant resistance, key for sustainable control of stripe rust. 2013. p. 608–27.
Google Scholar
Chen X, Line R. Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant (HTAP) resistance and interaction of HTAP and race-specific seedling resistance to Puccinia striiformis. Phytopathology (USA). 1995;85:573–8.
Singh RP, Huerta-Espino J, William HM. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For. 2005;29:121–7.
CAS
Google Scholar
Lagudah ES. Molecular genetics of race non-specific rust resistance in wheat. Euphytica. 2011;179:81–91.
Article
Google Scholar
Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, et al. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3. 2015;5:449–65.
Article
PubMed Central
PubMed
Google Scholar
Muleta KT, Chen X, Pumphrey M. Genome-wide mapping of resistance to stripe rust caused by Puccinia striiformis f. sp. tritici in hexaploid winter wheat. Crop Sci. 2020;60:115–31.
Article
CAS
Google Scholar
Chen X. Challenges and solutions for stripe rust control in the United States. Aust J Agric Res. 2007;58:648–55.
Article
Google Scholar
Wellings C. A new pathotype of wheat stripe rust with implications for the VPM resistance. The University of Sydney. Plant Breeding Institute, Cereal rust report (season 2006). 2007;4:1–2.
Wellings C. Global status of stripe rust. BGRI 2010 technical workshop oral presentations Full papers and abstracts May 30–31, 2010. St Petersburg: Borlaug Global Rust Initiative (BGRI); 2010. p. 34–48.
Google Scholar
Chen X, Penman L, Wan A, Cheng P. Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol. 2010;32:315–33.
Article
Google Scholar
Singh R, Huerta-Espino J, Bhavani S, Herrera-Foessel S, Singh D, Singh P, et al. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica. 2011;179:175–86.
Article
Google Scholar
Hou L, Chen X, Wang M, See DR, Chao S, Bulli P, et al. Mapping a large number of QTL for durable resistance to stripe rust in winter wheat Druchamp using SSR and SNP markers. PLoS One. 2015;10:e0126794.
Article
PubMed Central
PubMed
Google Scholar
Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet. 2018;19:21.
Article
CAS
PubMed
Google Scholar
McIntosh R, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, et al. Catalogue of gene symbols for wheat in 12th international wheat genetics symposium. 2013.
Google Scholar
Jan I, Saripalli G, Kumar K, Kumar A, Singh R, Batra R, et al. Meta-QTLs and candidate genes for stripe rust resistance in wheat. Sci Rep. 2021;11:1–13.
Article
Google Scholar
Bulli P, Zhang J, Chao S, Chen X, Pumphrey M. Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3. 2016;6:2237–53.
Article
CAS
PubMed Central
PubMed
Google Scholar
Flint-Garcia SA, Thornsberry JM, Buckler ES IV. Structure of linkage disequilibrium in plants. 2003. p. 1–33.
Google Scholar
Liu L, Yuan C, Wang M, See D, Zemetra R, Chen X. QTL analysis of durable stripe rust resistance in the North American winter wheat cultivar Skiles. Theor Appl Genet. 2019;132:1677–91.
Article
CAS
PubMed
Google Scholar
Huang X, Han B. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. 2014;65:531–51.
Article
CAS
PubMed
Google Scholar
Nordborg M, Weigel D. Next-generation genetics in plants. Nature. 2008;456:720–3.
Article
CAS
PubMed
Google Scholar
Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, et al. Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor Appl Genet. 2012;124:233–46.
Article
PubMed
Google Scholar
Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet. 2013;45:957–61.
Article
CAS
PubMed
Google Scholar
Dodig D, Zoric M, Kobiljski B, Savic J, Kandic V, Quarrie S, et al. Genetic and association mapping study of wheat agronomic traits under contrasting water regimes. Int J Mol Sci. 2012;13:6167–88.
Article
CAS
PubMed Central
PubMed
Google Scholar
Luján Basile SM, Ramírez IA, Crescente JM, Conde MB, Demichelis M, Abbate P, et al. Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC Plant Biol. 2019;19:1–16.
Article
Google Scholar
Reif JC, Gowda M, Maurer HP, Longin C, Korzun V, Ebmeyer E, et al. Association mapping for quality traits in soft winter wheat. Theor Appl Genet. 2011;122:961–70.
Article
PubMed
Google Scholar
Letta T, Maccaferri M, Badebo A, Ammar K, Ricci A, Crossa J, et al. Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping. Theor Appl Genet. 2013;126:1237–56.
Article
PubMed
Google Scholar
Yao F, Zhang X, Ye X, Li J, Long L, Yu C, et al. Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces. BMC Genet. 2019;20:1–16.
Article
Google Scholar
Zhang J, Gizaw SA, Bossolini E, Hegarty J, Howell T, Carter AH, et al. Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theor Appl Genet. 2018;131:1741–59.
Article
PubMed Central
PubMed
Google Scholar
International Wheat Genome Sequencing Consortium, Appels R, Eversole K, Stein N, Feuillet C, Keller B, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:eaar7191.
Article
Google Scholar
Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 2021;107:303–14.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.
Article
CAS
PubMed
Google Scholar
Visioni A, Gyawali S, Selvakumar R, Gangwar OP, Shekhawat PS, Bhardwaj SC, et al. Genome wide association mapping of seedling and adult plant resistance to barley stripe rust (Puccinia striiformis f. sp. hordei) in India. Front Plant Sci. 2018;9:520.
Article
PubMed Central
PubMed
Google Scholar
Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping in plants. Plant Genome. 2008;1:5–20.
Article
CAS
Google Scholar
Gyawali S, Otte ML, Chao S, Jilal A, Jacob DL, Amezrou R, et al. Genome wide association studies (GWAS) of element contents in grain with a special focus on zinc and iron in a world collection of barley (Hordeum vulgare L.). J Cereal Sci. 2017;77:266–74.
Article
CAS
Google Scholar
Naruoka Y, Garland-Campbell K, Carter A. Genome-wide association mapping for stripe rust (Puccinia striiformis f. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.). Theor Appl Genet. 2015;128:1083–101.
Article
CAS
PubMed
Google Scholar
Yao W, Liu Z, Fan Y, Shen X, Chao K, Hou L, et al. Inheritance and molecular markers for yellow rust resistant gene(s) in wheat cultivar Tianxuan43. Acta Phytopathology. 2015;45:48–56.
Google Scholar
Lukaszewski AJ. Manipulation of the 1RS. 1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 2000;40:216–25.
Article
CAS
Google Scholar
Ma J, Zhou R, Dong Y, Wang L, Wang X, Jia J. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L using microsatellite markers. Euphytica. 2001;120:219–26.
Article
CAS
Google Scholar
Cheng P, Xu L, Wang M, See D, Chen X. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet. 2014;127:2267–77.
Article
CAS
PubMed
Google Scholar
Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun. 2018;9:1–12.
Article
CAS
Google Scholar
Zhang X, Han D, Zeng Q, Duan Y, Yuan F, Shi J, et al. Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS One. 2013;8:e57885.
Article
CAS
PubMed Central
PubMed
Google Scholar
William M, Singh R, Huerta-Espino J, Islas SO, Hoisington D. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathol. 2003;93:153–9.
Article
CAS
Google Scholar
Lin F, Chen X. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet. 2007;114:1277–87.
Article
CAS
PubMed
Google Scholar
Wang R, Hai L, Zhang X, You G, Yan C, Xiao S. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai× Yu8679. Theor Appl Genet. 2009;118:313–25.
Article
CAS
PubMed
Google Scholar
Liu F, Niu Y, Deng H, Tan G. Mapping of a major stripe rust resistance gene in Chinese native wheat variety Chike using microsatellite markers. JGG. 2007;34:1123–30.
CAS
Google Scholar
Peng J, Fahima T, Röder M, Li Y, Dahan A, Grama A, et al. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet. 1999;98:862–72.
Article
CAS
Google Scholar
Rosewarne G, Herrera-Foessel S, Singh R, Huerta-Espino J, Lan C, He Z. Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet. 2013;126:2427–49.
Article
CAS
PubMed Central
PubMed
Google Scholar
Case AJ, Naruoka Y, Chen X, Garland-Campbell KA, Zemetra RS, Carter AH. Mapping stripe rust resistance in a BrundageXCoda winter wheat recombinant inbred line population. PLoS One. 2014;9:e91758.
Article
PubMed Central
PubMed
Google Scholar
Gerechter-Amitai Z, Van Silfhout C, Grama A, Kleitman F. Yr15—a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica. 1989;43:187–90.
Article
Google Scholar
Hovmøller MS, Justesen AF. Appearance of atypical Puccinia striiformis f. sp. tritici phenotypes in north-western Europe. Aust J Agric Res. 2007;58:518–24.
Article
Google Scholar
Hovmøller MS, Rodriguez-Algaba J. Global rust reference center. 2021. https://agro.au.dk/forskning/internationale-platforme/wheatrust/.
Google Scholar
Chen C, He Z, Lu J, Li J, Ren Y, Ma C, et al. Molecular mapping of stripe rust resistance gene YrJ22 in Chinese wheat cultivar Jimai 22. Mol Breed. 2016;36:1–8.
Article
Google Scholar
Randhawa MS, Bariana HS, Mago R, Bansal UK. Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breed. 2015;35:1–8.
Article
CAS
Google Scholar
Suenaga K, Singh R, Huerta-Espino J, William H. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathol. 2003;93:881–90.
Article
CAS
Google Scholar
Zhao L, Feng J, Zhang C-Y, Xu X-D, Chen X-M, Sun Q, et al. The dissection and SSR mapping of a high-temperature adult-plant stripe rust resistance gene in American spring wheat cultivar Alturas. Eur J Plant Pathol. 2012;134:281–8.
Article
Google Scholar
Yang E-N, Rosewarne G, Herrera-Foessel S, Huerta-Espino J, Tang Z-X, Sun C-F, et al. QTL analysis of the spring wheat “Chapio” identifies stable stripe rust resistance despite inter-continental genotype× environment interactions. Theor Appl Genet. 2013;126:1721–32.
Article
CAS
PubMed
Google Scholar
William H, Singh R, Huerta-Espino J, Palacios G, Suenaga K. Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome. 2006;49:977–90.
Article
CAS
PubMed
Google Scholar
Basnet B, Singh R, Ibrahim A, Herrera-Foessel S, Huerta-Espino J, Lan C, et al. Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breed. 2014;33:385–99.
Article
CAS
Google Scholar
Lan C, Rosewarne GM, Singh RP, Herrera-Foessel SA, Huerta-Espino J, Basnet BR, et al. QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin# 1. Mol Breed. 2014;34:789–803.
Article
CAS
Google Scholar
Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Negre S, et al. Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan.’ Phytopathol. 2009;99:968–73.
Liu J, He Z, Wu L, Bai B, Wen W, Xie C, et al. Genome-wide linkage mapping of QTL for adult-plant resistance to stripe rust in a Chinese wheat population Linmai 2× Zhong 892. PLoS ONE. 2015;10:e0145462.
Article
PubMed Central
PubMed
Google Scholar
Bariana H, Bansal U, Schmidt A, Lehmensiek A, Kaur J, Miah H, et al. Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica. 2010;176:251–60.
Article
CAS
Google Scholar
Bansal U, Forrest K, Hayden M, Miah H, Singh D, Bariana H. Characterisation of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet. 2011;122:1461–6.
Article
CAS
PubMed
Google Scholar
Zwart R, Thompson J, Milgate A, Bansal U, Williamson P, Raman H, et al. QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed. 2010;26:107–24.
Article
Google Scholar
Ren Y, He Z, Li J, Lillemo M, Wu L, Bai B, et al. QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor Appl Genet. 2012;125:1211–21.
Article
PubMed
Google Scholar
Wang L, Ma J, Zhou R, Wang X, Jia J. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, PI 178383 (Triticum aestivum L.). Euphytica. 2002;124:71–3.
Article
CAS
Google Scholar
Xiang C, Feng J, Wang M, Chen X, See D, Wan A, et al. Molecular mapping of stripe rust resistance gene Yr76 in winter club wheat cultivar Tyee. Phytopathol. 2016;106:1186–93.
Article
CAS
Google Scholar
Ma D, Fang Z, Yin J, Chao K, Jing J, Li Q, et al. Molecular mapping of stripe rust resistance gene YrHu derived from Psathyrostachys huashanica. Mol Breed. 2016;36:1–9.
Article
Google Scholar
Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.
Article
Google Scholar
Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci. 2001;98:11479–84.
Article
CAS
PubMed Central
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing. 3.0.2. 2020. http://www.R-project.org/.
Google Scholar
Hovmøller MS, Rodriguez-Algaba J, Thach T, Justesen AF, Hansen J. Report for Puccinia striiformis race analyses/molecular genotyping, GRRC, Flakkebjerg, DK-4200 Slagelse, Denmark. 2019. https://agro.au.dk/fileadmin/www.grcc.au.dk/International_Services/Pathotype_YR_results/Summary_of_Puccinia_striiformis_molecular_genotyping_2018.pdf.
Google Scholar
Hovmøller MS, Rodriguez-Algaba J, Thach T, Justesen AF, Hansen J. Report for Puccinia striiformis race analyses and molecular genotyping 2017, Global Rust Reference Center (GRRC), Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark. 2018. https://agro.au.dk/fileadmin/Summary_of_Puccinia_striiformis_race_analysis_2017.pdf.
Google Scholar
McNeal F, Konzak C, Smith E, Tate W, Russell T. A uniform system for recording and processing cereal research data. US Department of Agriculture, Agricultural Research Service. 1971;42:34–121.
Peterson RF, Campbell A, Hannah A. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res. 1948;26:496–500.
Article
Google Scholar
Wilcoxon RD, Skovmand B, Atif A. Evaluation of wheat cultivars for ability to retard development of stem rust. Ann Appl Biol. 1975;80:275–81.
Article
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. nlme: Linear and nonlinear mixed effects models. R Package Version. 2013;3:111.
Google Scholar
Milliken GA, Johnson DE. Analysis of messy data, volume III: analysis of covariance. New York: Chapman and Hall/CRC; 2001. p. 624.
Hallauer AR, Carena MJ, Miranda Filho Jd. Quantitative genetics in maize breeding. Iowa: Springer Science & Business Media; 2010. p. 662.
Google Scholar
Wang J, Zhang Z. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. GPB. 2021;19:629–40.
Huang M, Liu X, Zhou Y, Summers RM, Zhang Z. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience. 2019;8:giy154.
Article
PubMed
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci. 2003;100:9440–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Anand L, Rodriguez Lopez CM. ChromoMap: an R package for interactive visualization of multi-omics data and annotation of chromosomes. BMC Bioinform. 2022;23:1–9.
Article
Google Scholar