Füssy Z, Oborník M. Complex Endosymbioses I: from primary to complex plastids, multiple independent events. In: Maréchal E, editor. Plastids: methods and protocols. New York: Springer US; 2018. p. 17–35.
Chapter
Google Scholar
Kaiser E, Correa-Galvis V, Armbruster U. Efficient photosynthesis in dynamic light environments: a chloroplast's perspective. Biochem J. 2019;476(19):2725–41. https://doi.org/10.1042/BCJ20190134.
Article
CAS
PubMed
Google Scholar
Armbruster U, Strand DD. Regulation of chloroplast primary metabolism. Photosynth Res. 2020;145(1):1–3. https://doi.org/10.1007/s11120-020-00765-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rolland N, Bouchnak I, Moyet L, Salvi D, Kuntz M. The Main functions of plastids. In: Maréchal E, editor. Plastids: methods and protocols. New York: Springer US; 2018. p. 73–85.
Chapter
Google Scholar
Solymosi K, Lethin J, Aronsson H. Diversity and plasticity of plastids in land plants. In: Maréchal E, editor. Plastids: methods and protocols. New York: Springer US; 2018. p. 55–72.
Chapter
Google Scholar
Jarvis P, López-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol. 2013;14(12):787–802. https://doi.org/10.1038/nrm3702.
Article
CAS
PubMed
Google Scholar
Dobrogojski J, Adamiec M, Luciński R. The chloroplast genome: a review. Acta Physiol Plant. 2020;42(6):Article 98. https://doi.org/10.1007/s11738-020-03089-x.
Article
CAS
Google Scholar
Shi L-X, Theg SM. The chloroplast protein import system: from algae to trees. Biochim Biophys Acta. 2013;1833(2):314–31. https://doi.org/10.1016/j.bbamcr.2012.10.002.
Article
CAS
PubMed
Google Scholar
Lee K, Kang H. Roles of Organellar RNA-binding proteins in plant growth, development, and abiotic stress responses. Int J Mol Sci. 2020;21(12):Article 4548. https://doi.org/10.3390/ijms21124548.
Article
CAS
Google Scholar
Robles P, Quesada V. Research Progress in the molecular functions of plant mTERF proteins. Cells. 2021;10(2):Article 205. https://doi.org/10.3390/cells10020205.
Article
CAS
PubMed
Google Scholar
Nawaz G, Kang H. Chloroplast- or mitochondria-targeted DEAD-box RNA helicases play essential roles in Organellar RNA metabolism and abiotic stress responses. Front Plant Sci. 2017;8:871. https://doi.org/10.3389/fpls.2017.00871.
Article
PubMed
PubMed Central
Google Scholar
Wu J, Liu H, Lu S, Hua J, Zou B. Identification and expression analysis of chloroplast ribonucleoproteins (cpRNPs) in Arabidopsis and rice. Genome. 2021;64(5):515–24. https://doi.org/10.1139/gen-2020-0007.
Article
CAS
PubMed
Google Scholar
Rovira AG, Smith AG. PPR proteins – orchestrators of organelle RNA metabolism. Physiol Plant. 2019;166(1):451–9. https://doi.org/10.1111/ppl.12950.
Article
CAS
PubMed
Google Scholar
Hicks JL, Lassadi I, Carpenter EF, Eno M, Vardakis A, Waller RF, et al. An essential pentatricopeptide repeat protein in the apicomplexan remnant chloroplast. Cell Microbiol. 2019;21(12):e13108. https://doi.org/10.1111/cmi.13108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, An Y, Xu P, Xiao J. Functioning of PPR proteins in organelle RNA metabolism and chloroplast biogenesis. Front Plant Sci. 2021;12(1). https://doi.org/10.3389/fpls.2021.627501.
Lurin C, Andreés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, et al. Genome-wide analysis of Arabidopsis Pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell. 2004;16(8):2089–103. https://doi.org/10.1105/tpc.104.022236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujii S, Small I. The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol. 2011;191(1):37–47. https://doi.org/10.1111/j.1469-8137.2011.03746.x.
Article
CAS
PubMed
Google Scholar
Small ID, Peeters N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci. 2000;25(2):45–7. https://doi.org/10.1016/S0968-0004(99)01520-0.
Article
Google Scholar
Zoschke R, Kroeger T, Belcher S, Schöttler MA, Barkan A, Schmitz-Linneweber C. The pentatricopeptide repeat-SMR protein ATP4 promotes translation of the chloroplast atpB/E mRNA. Plant J. 2012;72(4):547–58. https://doi.org/10.1111/j.1365-313X.2012.05081.x.
Article
CAS
PubMed
Google Scholar
Cheng S, Gutmann B, Zhong X, Ye Y, Fisher MF, Bai F, et al. Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. Plant J. 2016;85(4):532–47. https://doi.org/10.1111/tpj.13121.
Article
CAS
PubMed
Google Scholar
Barkan A, Small I. Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol. 2014;65(1):415–42. https://doi.org/10.1146/annurev-arplant-050213-040159.
Article
CAS
PubMed
Google Scholar
Rivals E, Bruyère CM, Toffano-Nioche C, Lecharny A. Formation of the Arabidopsis Pentatricopeptide repeat family. Plant Physiol. 2006;141(3):825–39. https://doi.org/10.1104/pp.106.077826.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou W, Lu Q, Li Q, Wang L, Ding S, Zhang A, et al. PPR-SMR protein SOT1 has RNA endonuclease activity. Proc Natl Acad Sci. 2017;114(8):E1554–63. https://doi.org/10.1073/pnas.1612460114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee K, Park SJ, Han JH, Jeon Y, Pai H-S, Kang H. A chloroplast-targeted pentatricopeptide repeat protein PPR287 is crucial for chloroplast function and Arabidopsis development. BMC Plant Biol. 2019;19(1):Article 244. https://doi.org/10.1186/s12870-019-1857-0.
Article
CAS
PubMed
Google Scholar
Wang X, Yang Z, Zhang Y, Zhou W, Zhang A, Lu C. Pentatricopeptide repeat protein PHOTOSYSTEM I BIOGENESIS FACTOR2 is required for splicing of ycf3. J Integr Plant Biol. 2020;62(11):1741–61. https://doi.org/10.1111/jipb.12936.
Article
CAS
PubMed
Google Scholar
Higashi H, Kato Y, Fujita T, Iwasaki S, Nakamura M, Nishimura Y, et al. The Pentatricopeptide repeat protein PGR3 is required for the translation of petL and ndhG by binding their 5′ UTRs. Plant Cell Physiol. 2021;62(7):1146–55. https://doi.org/10.1093/pcp/pcaa180.
Article
CAS
PubMed
Google Scholar
Huang W, Zhang Y, Shen L, Fang Q, Liu Q, Gong C, et al. Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice. New Phytol. 2020;228(4):1401–16. https://doi.org/10.1111/nph.16769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutmann B, Royan S, Schallenberg-Rüdinger M, Lenz H, Castleden IR, McDowell R, et al. The expansion and diversification of Pentatricopeptide repeat RNA-editing factors in plants. Mol Plant. 2020;13(2):215–30. https://doi.org/10.1016/j.molp.2019.11.002.
Article
CAS
PubMed
Google Scholar
Lv J, Shang L, Chen Y, Han Y, Yang X, Xie S, Bai W, Hu M, Wu H, Lei K, et al. OsSLC1 encodes a Pentatricopeptide repeat protein essential for early chloroplast development and seedling survival. Rice. 2020;13(1):25. https://doi.org/10.1186/s12284-020-00385-5.
Article
PubMed
PubMed Central
Google Scholar
Tan J, Tan Z, Wu F, Sheng P, Heng Y, Wang X, et al. A novel chloroplast-localized Pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in Rice. Mol Plant. 2014;7(8):1329–49. https://doi.org/10.1093/mp/ssu054.
Article
CAS
PubMed
Google Scholar
Hammani K, Takenaka M, Miranda R, Barkan A. A PPR protein in the PLS subfamily stabilizes the 5′-end of processed rpl16 mRNAs in maize chloroplasts. Nucleic Acids Res. 2016;44(9):4278–88. https://doi.org/10.1093/nar/gkw270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Xiao J, Li Y, Su B, Xu H, Shan X, et al. PDM3, a pentatricopeptide repeat-containing protein, affects chloroplast development. J Exp Bot. 2017;68(20):5615–27. https://doi.org/10.1093/jxb/erx360.
Article
CAS
PubMed
Google Scholar
Wang D, Liu H, Zhai G, Wang L, Shao J, Tao Y. OspTAC2 encodes a pentatricopeptide repeat protein and regulates rice chloroplast development. J Genet Genomics. 2016;43(10):601–8. https://doi.org/10.1016/j.jgg.2016.09.002.
Article
PubMed
Google Scholar
Caredda S, Doncoeur C, Devaux P, Sangwan RS, Clément C. Plastid differentiation during androgenesis in albino and non-albino producing cultivars of barley (Hordeum vulgare L.). Sex Plant Reprod. 2000;13(2):95–104. https://doi.org/10.1007/s004970000043.
Article
CAS
Google Scholar
Jiang X, Zhao H, Guo F, Shi X, Ye C, Yang P, et al. Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis ‘Huangjinju’. BMC Plant Biol. 2020;20(1):Article 216. https://doi.org/10.1186/s12870-020-02425-0.
Article
CAS
PubMed
Google Scholar
Yan C, Peng L, Zhang L, Qiu Z. Fine mapping of a candidate gene for cool-temperature-induced albinism in ornamental kale. BMC Plant Biol. 2020;20(1):Article 460. https://doi.org/10.1186/s12870-020-02657-0.
Article
CAS
PubMed
Google Scholar
Dewir YH, Nurmansyah, Naidoo Y, Teixeira da Silva JA. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 2018;37(11):1451–70. https://doi.org/10.1007/s00299-018-2326-1.
Article
CAS
PubMed
Google Scholar
Salazar-Iribe A, De-la-Peña C. Auxins, the hidden player in chloroplast development. Plant Cell Rep. 2020;39(12):1595–608. https://doi.org/10.1007/s00299-020-02596-y.
Article
CAS
PubMed
Google Scholar
Yao JL, Cohen D. Multiple gene control of plastome-genome incompatibility and plastid DNA inheritance in interspecific hybrids of Zantedeschia. Theor Appl Genet. 2000;101(3):400–6. https://doi.org/10.1007/s001220051496.
Article
CAS
Google Scholar
Mozgova GV, Zaitseva OI, Lemesh VA. Structural changes in chloroplast genome accompanying albinism in anther culture of wheat and Triticale. Cereal Res Commun. 2012;40(4):467–75. https://doi.org/10.1556/CRC.40.2012.0007.
Article
CAS
Google Scholar
Shi K, Gu J, Guo H, Zhao L, Xie Y, Xiong H, et al. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta. PLoS One. 2017;12(5):e0177992. https://doi.org/10.1371/journal.pone.0177992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumari M, Clarke HJ, Small I, Siddique KHM. Albinism in plants: a major bottleneck in wide hybridization, Androgenesis and doubled haploid culture. Crit Rev Plant Sci. 2009;28(6):393–409. https://doi.org/10.1080/07352680903133252.
Article
CAS
Google Scholar
Zhao X, Huang J, Chory J. Unraveling the linkage between retrograde signaling and RNA metabolism in plants. Trends Plant Sci. 2020;25(2):141–7. https://doi.org/10.1016/j.tplants.2019.10.009.
Article
CAS
PubMed
Google Scholar
Saha D, Prasad AM, Srinivasan R. Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol Biochem. 2007;45(8):521–34. https://doi.org/10.1016/j.plaphy.2007.03.026.
Article
CAS
PubMed
Google Scholar
Hernández-Castellano S, Garruña-Hernández R, Us-Camas R, Kú-Gonzalez A, De-la-Peña C. Agave angustifolia albino plantlets lose stomatal physiology function by changing the development of the stomatal complex due to a molecular disruption. Mol Gen Genomics. 2020;295(3):787–805. https://doi.org/10.1007/s00438-019-01643-y.
Article
CAS
Google Scholar
Wu G-Z, Chalvin C, Hoelscher M, Meyer EH, Wu XN, Bock R. Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1. Plant Physiol. 2018;176(3):2472–95. https://doi.org/10.1104/pp.18.00009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Li W, Cheng J. The novel protein DELAYED PALE-GREENING1 is required for early chloroplast biogenesis in Arabidopsis thaliana. Sci Rep. 2016;6(1):25742. https://doi.org/10.1038/srep25742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z-w, Lv J, Xie S-z, Zhang Y, Qiu Z-n, Chen P, et al. OsSLA4 encodes a pentatricopeptide repeat protein essential for early chloroplast development and seedling growth in rice. Plant Growth Regul. 2018;84(2):249–60. https://doi.org/10.1007/s10725-017-0336-6.
Article
CAS
Google Scholar
Tadini L, Ferrari R, Lehniger M-K, Mizzotti C, Moratti F, Resentini F, et al. Trans-splicing of plastid rps12 transcripts, mediated by AtPPR4, is essential for embryo patterning in Arabidopsis thaliana. Planta. 2018;248(1):257–65. https://doi.org/10.1007/s00425-018-2896-8.
Article
CAS
PubMed
Google Scholar
Yuan N, Wang J, Zhou Y, An D, Xiao Q, Wang W, et al. EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. Plant Sci. 2019;287:110203. https://doi.org/10.1016/j.plantsci.2019.110203.
Article
CAS
PubMed
Google Scholar
Loudya N, Mishra P, Takahagi K, Uehara-Yamaguchi Y, Inoue K, Bogre L, et al. Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf. Genome Biol. 2021;22(1):151. https://doi.org/10.1186/s13059-021-02366-3.
Article
PubMed
PubMed Central
Google Scholar
Satou M, Enoki H, Oikawa A, Ohta D, Saito K, Hachiya T, et al. Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins. Plant Mol Biol. 2014;85(4):411–28. https://doi.org/10.1007/s11103-014-0194-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loudya N, Okunola T, He J, Jarvis P, López-Juez E. Retrograde signalling in a virescent mutant triggers an anterograde delay of chloroplast biogenesis that requires GUN1 and is essential for survival. Philos Trans R Soc Lond Ser B Biol Sci. 2020;375(1801):20190400. https://doi.org/10.1098/rstb.2019.0400.
Article
CAS
Google Scholar
Moreno JC, Mi J, Alagoz Y, Al-Babili S. Plant apocarotenoids: from retrograde signaling to interspecific communication. Plant J. 2021;105(2):351–75. https://doi.org/10.1111/tpj.15102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu T, Masuda T. The role of Tetrapyrrole- and GUN1-dependent signaling on chloroplast biogenesis. Plants. 2021;10(2):196 https://www.mdpi.com/2223-7747/10/2/196.
Article
CAS
Google Scholar
Wagoner JA, Sun T, Lin L, Hanson MR. Cytidine Deaminase motifs within the DYW domain of two Pentatricopeptide repeat-containing proteins are required for site-specific chloroplast RNA editing. J Biol Chem. 2015;290(5):2957–68. https://doi.org/10.1074/jbc.M114.622084.
Article
CAS
PubMed
Google Scholar
Zhang H-D, Cui Y-L, Huang C, Yin Q-Q, Qin X-M, Xu T, et al. PPR protein PDM1/SEL1 is involved in RNA editing and splicing of plastid genes in Arabidopsis thaliana. Photosynth Res. 2015;126(2):311–21. https://doi.org/10.1007/s11120-015-0171-4.
Article
CAS
PubMed
Google Scholar
Wu H, Zhang L. The PPR protein PDM1 is involved in the processing of rpoA pre-mRNA in Arabidopsis thaliana. Chin Sci Bull. 2010;55(30):3485–9. https://doi.org/10.1007/s11434-010-4040-4.
Article
CAS
Google Scholar
Pyo YJ, Kwon K-C, Kim A, Cho MH. Seedling Lethal1, a Pentatricopeptide repeat protein lacking an E/E+ or DYW domain in Arabidopsis, is involved in plastid gene expression and early chloroplast development. Plant Physiol. 2013;163(4):1844–58. https://doi.org/10.1104/pp.113.227199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zoschke R, Qu Y, Zubo YO, Börner T, Schmitz-Linneweber C. Mutation of the pentatricopeptide repeat-SMR protein SVR7 impairs accumulation and translation of chloroplast ATP synthase subunits in Arabidopsis thaliana. J Plant Res. 2013;126(3):403–14. https://doi.org/10.1007/s10265-012-0527-1.
Article
CAS
PubMed
Google Scholar
Beick S, Schmitz-Linneweber C, Williams-Carrier R, Jensen B, Barkan A. The Pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Mol Cell Biol. 2008;28(17):5337–47. https://doi.org/10.1128/MCB.00563-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Zhou W, Che L, Rochaix J-D, Lu C, Li W, et al. PPR protein BFA2 is essential for the accumulation of the atpH/F transcript in chloroplasts. Front Plant Sci. 2019;10:446. https://doi.org/10.3389/fpls.2019.00446.
Article
PubMed
PubMed Central
Google Scholar
Hammani K, Okuda K, Tanz SK, Chateigner-Boutin A-L, Shikanai T, Small I. A study of new Arabidopsis chloroplast RNA editing mutants reveals general features of editing factors and their target sites the plant. Cell. 2009;21(11):3686–99. https://doi.org/10.1105/tpc.109.071472.
Article
CAS
Google Scholar
Duarte-Aké F, Castillo-Castro E, Pool FB, Espadas F, Santamaría JM, Robert ML, et al. Physiological differences and changes in global DNA methylation levels in Agave angustifolia Haw. albino variant somaclones during the micropropagation process. Plant Cell Rep. 2016;35(12):2489–502. https://doi.org/10.1007/s00299-016-2049-0.
Article
CAS
PubMed
Google Scholar
Us-Camas R, Castillo-Castro E, Aguilar-Espinosa M, Limones-Briones V, Rivera-Madrid R, Robert-Díaz ML, et al. Assessment of molecular and epigenetic changes in the albinism of Agave angustifolia Haw. Plant Sci. 2017;263:156–67 https://www.sciencedirect.com/science/article/pii/S0168945216308858.
Article
CAS
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97 https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1962.tb08052.x.
Article
CAS
Google Scholar
Robert ML, Herrera-Herrera JL, Castillo E, Ojeda G, Herrera-Alamillo MA. An efficient method for the micropropagation of Agave species. In: Loyola-Vargas VM, Vázquez-Flota F, editors. Plant Cell Culture Protocols. Totowa: Humana Press; 2006. p. 165–78.
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10):e1002195. https://doi.org/10.1371/journal.pcbi.1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boussardon C, Salone V, Avon A, Berthomé R, Hammani K, Okuda K, et al. Two interacting proteins are necessary for the editing of the NdhD-1 site in Arabidopsis plastids the plant. Cell. 2012;24(9):3684–94. https://doi.org/10.1105/tpc.112.099507.
Article
CAS
Google Scholar
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar Gustavo A, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2020;49(D1):D412–9. https://doi.org/10.1093/nar/gkaa913.
Article
CAS
PubMed Central
Google Scholar
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16(1):169. https://doi.org/10.1186/s12859-015-0611-3.
Article
PubMed
PubMed Central
Google Scholar
Karpenahalli MR, Lupas AN, Söding J. TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. BMC Bioinformatics. 2007;8(1):Article 2. https://doi.org/10.1186/1471-2105-8-2.
Article
CAS
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40. https://doi.org/10.1093/bioinformatics/btu031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43(W1):W39–49. https://doi.org/10.1093/nar/gkv416.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2017;20(4):1160–6. https://doi.org/10.1093/bib/bbx108.
Article
CAS
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2011;40(D1):D130–5. https://doi.org/10.1093/nar/gkr1079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Small I, Peeters N, Legeai F, Lurin C. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics. 2004;4(6):1581–90. https://doi.org/10.1002/pmic.200300776.
Article
CAS
PubMed
Google Scholar
Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2(5):e201900429. https://doi.org/10.26508/lsa.201900429.
Article
PubMed
PubMed Central
Google Scholar
Suárez-González EM, López MG, Délano-Frier JP, Gómez-Leyva JF. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors. J Plant Physiol. 2014;171(3):359–72. https://doi.org/10.1016/j.jplph.2013.08.002.
Article
CAS
PubMed
Google Scholar
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9. https://doi.org/10.1093/bioinformatics/btw313.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
RStudio T. RStudio: integrated development environment for R. 2021.http://www.rstudio.com/.
Google Scholar
Yan J, Yao Y, Hong S, Yang Y, Shen C, Zhang Q, et al. Delineation of pentatricopeptide repeat codes for target RNA prediction. Nucleic Acids Res. 2019;47(7):3728–38. https://doi.org/10.1093/nar/gkz075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin X, Yang X, Huang X, Jin G, Yang X, Wu M, et al. The complete chloroplast genome of Agave angustifolia. Mitochondrial DNA Part B. 2021;6(11):3236–7. https://doi.org/10.1080/23802359.2021.1941360.
Article
PubMed
PubMed Central
Google Scholar