Zhu J. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24. https://doi.org/10.1016/j.cell.2016.08.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol. 2011;52(9):1569–82. https://doi.org/10.1093/pcp/pcr106.
Article
CAS
PubMed
Google Scholar
Bailey-Serres J, Lee SC, Brinton E. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 2012;160(4):1698–709. https://doi.org/10.1104/pp.112.208173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gokul A, Niekerk LA, Carelse MF, Keyster M. Transgenic technology for efficient abiotic stress tolerance in plants (Chapter 5). In: Kiran U, Abdin M, Kamaluddin, editors. Transgenic Technology Based Value Addition in Plant Biotechnology. Amsterdam: Elsevier; 2020. P. 95-122. https://doi.org/10.1016/b978-0-12-818632-9.00005-8.
Lata C, Shivhare R. Engineering cereal crops for enhanced abiotic stress tolerance. P Indian Natl Sci Ac. 2021;87(1):6–83. https://doi.org/10.1007/s43538-021-00006-9.
Article
Google Scholar
Guan Y, Liu S, Wu W, Hong K, Shi J. Genome-wide identification and cold stress-induced expression analysis of the CBF gene family in liriodendron chinense. J Forestry Res. 2021;32:2531–43. https://doi.org/10.1007/s11676-020-01275-8.
Article
CAS
Google Scholar
Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination. Curr Opin Plant Biol. 2002;5(1):33–6. https://doi.org/10.1016/s1369-5266(01)00219-9.
Article
CAS
PubMed
Google Scholar
Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol. 2009;149(4):2000–12. https://doi.org/10.1021/ol006606+.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Zhu JK. In vitro reconstitution of an abscisic acid signalling pathway. Nature. 2009;462(7273):660–4. https://doi.org/10.1038/nature08599.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324(5930):1064–8. https://doi.org/10.1126/science.1172408.
Article
CAS
PubMed
Google Scholar
Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR. Abscisic acid inhibits type 2c protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324(5930):1068–71. https://doi.org/10.1126/science.1173041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Molecular basis of the core regulatory network in ABA responses: sensing signaling and transport. Plant Cell Physiol. 2010;51(11):1821–39. https://doi.org/10.1093/pcp/pcq156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Yang S. ABA regulation of the cold stress response in plants (Chapter 17). In: Zhang DP, editor. Abscisic acid: metabolism transport and signaling. New York: Springer; 2014. p. 337–363. https://doi.org/10.1007/978-94-017-9424-4_17.
Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernandez MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell. 2012;24(6):2483–96. https://doi.org/10.1105/tpc.112.098574.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Zhang Z, Gao J, Wang P, Hu T, Wang Z, Liu W, Xie X, Lu T, Xue L, Liu Y, Macho AP, Tao WA, Bressan RA, Zhu J. Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independen SnRK2 activity. Cell Rep. 2018;23(11):3340–51. https://doi.org/10.1016/j.celrep.2018.05.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radauer C, Lackner P, Breiteneder H. The Bet v 1 fold: An ancient versatile scaffold for binding of large hydrophobic ligands. BMC Evo Biol. 2008;8(1):286. https://doi.org/10.1186/1471-2148-8-286.
Article
CAS
Google Scholar
Klingler JP, Batelli G, Zhu JK. ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot. 2010;61(12):3199–210. https://doi.org/10.1093/jxb/erq151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci. 2010;15(7):395–401. https://doi.org/10.1016/j.tplants.2010.04.006.
Article
CAS
PubMed
Google Scholar
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79. https://doi.org/10.1146/annurev-arplant-042809-112122.
Article
CAS
PubMed
Google Scholar
Yuan X, Yin P, Hao Q, Yan C, Wang J, Yan N. Single amino acid alteration between valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2. J Biol Chem. 2010;285(37):28953–8. https://doi.org/10.1074/jbc.M110.160192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishimura N, Sarkeshik A, Nito K, Park S-Y, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR. SchroederJI, PYR/PYL/RCAR family members are major in vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 2009;61(2):290–9. https://doi.org/10.1111/j.1365-313X.2009.04054.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Rodriguez PL. PYRABACTIN RESISTANCE1-LIKE8 plays an important role in the regulation of abscisic acid signaling in root. Plant Physiol. 2013;161:931–41. https://doi.org/10.1104/pp.112.208678.
Article
CAS
PubMed
Google Scholar
Xing L, Zhao Y, Gao J, Xiang C, Zhu JK. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Scientific Rep. 2016;6(1):27177. https://doi.org/10.1038/srep27177.
Article
CAS
Google Scholar
Kai W, Wang J, Liang B, Fu Y, Zheng Y, Zhang W, Leng P. Role of an ABA receptor SlPYL9 in tomato fruit ripening. J Ex Bot. 2019;70(21):6305–19. https://doi.org/10.1093/jxb/erz396.
Article
CAS
Google Scholar
Zhang Q, Kong X, Yu Q, Ding Y, Li X, Yang Y. Responses of PYR/PYL/RCAR ABA receptors to vontrasting stresses, heat and cold in Arabidopsis. Plant Signaling&Beha. 2019;4(12):1670596. https://doi.org/10.1080/15592324.2019.1670596.
Article
CAS
Google Scholar
Li X, Li G, Li Y, Kong X, Zhang L, Wang J, Li X, Yang Y. ABA receptor subfamily III enhances abscisic acid sensitivity and improves the drought tolerance of Arabidopsis. Int J Mol Sci. 2018;19(7):1938. https://doi.org/10.3390/ijms19071938.
Article
CAS
PubMed Central
Google Scholar
Lenka SK, Muthusamy SK, Chinnusamy V, Bansal KC. Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Molecular Biotech. 2018;60(5):350–61. https://doi.org/10.1007/s12033-018-0076-5.
Article
CAS
Google Scholar
Verma RK, Santosh Kumar VV, Yadav SK, Pushkar S, Rao MV, Chinnusamy V. Overexpression of ABA Receptor PYL10 gene confers drought and cold tolerance to Indica rice. Front Plant Sci. 2019;10:1488–1488. https://doi.org/10.3389/fpls.2019.01488.
Article
PubMed
PubMed Central
Google Scholar
Lim CW, Lee SC. ABA-Dependent and ABA-Independent functions of RCAR5/PYL11 in response to cold stress. Front Plant Sci. 2020;11:620. https://doi.org/10.3389/fpls.2020.587620.
Article
Google Scholar
Yu J, Ge H, Wang X, Tang R, Wang Y, Zhao F, Lan W, Luan S, Yang L. Overexpression of Pyrabactin Resistance-Like Abscisic Acid receptors enhances drought, osmotic, and cold tolerance in transgenic poplars. Front Plant Sci. 2017;8:1752. https://doi.org/10.3389/fpls.2017.01752.
Article
PubMed
PubMed Central
Google Scholar
Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Rodriguez PL. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 2009;60(4):575–88. https://doi.org/10.1111/j.1365-313x.2009.03981.x.
Article
CAS
PubMed
Google Scholar
Quan W, Hu Y, Mu Z, Shi H, Chan Z. Overexpression of AtPYL5 under the control of guard cell specific promoter improves drought stress tolerance in Arabidopsis. Plant Physiol Bioch. 2018;129:150–7. https://doi.org/10.1016/j.plaphy.2018.05.033.
Article
CAS
Google Scholar
Lim CW, Baek W, Han SW, Lee SC. Arabidopsis PYL8 plays an important role for ABA signaling and drought stress responses. Plant Pathol J. 2013;29(4):471–6. https://doi.org/10.5423/PPJ.NT.07.2013.0071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Wang M, Zhou S, Xu B, Chen P, Ma F, Mao K. The ABA receptor gene MdPYL9 confers tolerance to drought stress in transgenic apple (Malus domestica). Environ Exp Bot. 2021;194:104695. https://doi.org/10.1016/j.envexpbot.2021.104695.
Liang C, Liu Y, Li Y, Meng Z, Yan R. Zhu Tao, Wang Y, Kang S, Ali Abid M, Malik W, Sun G, Guo S, Zhang Rui, Activation of ABA Receptors gene GhPYL9-11A is positively correlated with cotton drought tolerance in transgenic Arabidopsis. Front Plant Sci. 2017;8:1453. https://doi.org/10.3389/fpls.2017.01453.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Zhao FL, Guo Y, Fan X, Wang Y, Wen YQ. The ABA receptor-like gene VyPYL9 from drought-resistance wild grapevine confers drought tolerance and ABA hypersensitivity in Arabidopsis. Plant Cell Tiss Org. 2019;138:543–58. https://doi.org/10.1007/s11240-019-01650-2.
Article
CAS
Google Scholar
Zhao Y, Qi G, Ren F, Wang Y, Wang P, Wu X. Analysis of PYL genes and their potential relevance to stress tolerance and berry ripening in grape. J Amer Soc Hort Sci. 2020;145(5):308–17. https://doi.org/10.21273/JASHS04942-20.
Article
CAS
Google Scholar
Li G, Xin H, Zheng XF, Li S, Hu Z. Identification of the abscisic acid receptor VvPYL1 in Vitis vinifera. Plant Biol. 2011;14(1):244–8. https://doi.org/10.1111/j.1438-8677.2011.00504.x.
Article
CAS
PubMed
Google Scholar
Gao Z, Li Q, Li J, Chen Y, Luo M, Li H, Ma C. Characterization of the ABA receptor VlPYL1 that regulates anthocyanin accumulation in grape berry skin. Front Plant Sci. 2018;9:592. https://doi.org/10.3389/fpls.2018.00592.
Article
PubMed
PubMed Central
Google Scholar
Siddiqua MK. Functional analysis of grape CBF genes. [Ph.D. Thesis.], Oran: University of Guelph. 2007.
Chang D, Yang Q, Wang B, Lu H, Feng Y. COR-like gene is involved in induced-expression response to multiple abiotic stresses in grape vine (vitis amurensis) tissues. Agr Sci China. 2014;5(7):604–10. https://doi.org/10.4236/as.2014.57063.
Article
CAS
Google Scholar
Sudesh KY. Cold stress tolerance mechanisms in plants. A review Agron. 2010;30(3):515–27. https://doi.org/10.1007/978-94-007-0394-0_27.
Article
Google Scholar
Theocharis A, Clement C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta. 2012;235(6):1091–105. https://doi.org/10.1007/s00425-012-1641-y.
Article
CAS
PubMed
Google Scholar
Zhou BY, Guo ZF. Effect of ABA and its biosynthesis inhibitor on chilling resistance and anti-oxidant enzymes activity. Acta Prata Sci. 2005;14(6):94–6.
Google Scholar
He HY, Xue L, Tian LP, Chen YL. Effect of low temperature stress on the chlorophyll contents and chlorophyll fluorescence parameters in muskmelon seedling leaves. Northern Hort. 2008;4:121–7.
Google Scholar
Huang X, Shi H, Hu Z, Liu A, Amombo E, Chen L, Fu J. ABA is involved in regulation of cold stress response in bermudagrass. Front Plant Sci. 2017;8:1613. https://doi.org/10.3389/fpls.2017.01613.
Article
PubMed
PubMed Central
Google Scholar
Battal P, Erez ME, Turker M, Berber I. “Molecular and Physiological Changes in Maize (Zea mays) Induced by Exogenous NAA, ABA and MeJa during Cold Stress. Ann Bot Fenn. 2008;45(3):173–85. https://doi.org/10.5735/085.045.0302.
Article
Google Scholar
Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Jiang W. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Bioch. 2016;108:478–87. https://doi.org/10.1016/j.plaphy.2016.08.013.
Article
CAS
Google Scholar
Fennell A. Freezing tolerance and injury in grapevines. J Crop Improv. 2004;10(1–2):201–35. https://doi.org/10.1300/j411v10n01_09.
Article
Google Scholar
Di F, Jian H, Wang T, Chen X, Ding Y, Du H, Lu K, Li J, Liu L. Genome-Wide analysis of the pyl gene family and identification of pyl genes that respond to abiotic stress in Brassica napus. Genes. 2018;9(3):156. https://doi.org/10.3390/genes9030156.
Article
CAS
PubMed Central
Google Scholar
Yadav SK, Santosh Kumar VV, Verma RK, Yadav P, Saroha A, Wankhede DP, Chinnusamy V. Genome-wide identification and characterization of ABA receptor PYL gene family in rice. BMC Genomics. 2020;21(1):676. https://doi.org/10.1186/s12864-020-07083-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol. 2009;16(12):1230–6.
Article
CAS
Google Scholar
Tsujishita Y, Hurley J. Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Mol Biol. 2000;7:408–14. https://doi.org/10.1038/75192.
Article
CAS
Google Scholar
Saavedra X, Modrego A, Rodríguez D, Gonzálezgarcía MP, Sanz L, Nicolás G, Lorenzo O. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol. 2010;152(1):133–50. https://doi.org/10.1104/pp.109.146381.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cimmino A, Capasso R, Muller F, Sambri I, Masella L, Raimo M, Ingrosso D. Protein isoaspartate methyltransferase prevents apoptosis induced by oxidative stress in endothelial cells: role of BCL-XL deamidation and methylation. PLoS ONE. 2008;3(9):e3258. https://doi.org/10.1371/journal.pone.0003258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Bressan RA, Zhu JK. ABA receptor PYL9 promotes drought resistance and leaf senescence. P Natl A Sci India B. 2016;113(7):1949–54. https://doi.org/10.1073/pnas.1522840113.P.
Article
CAS
Google Scholar
Yildirim K, Kaya Z. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L). Plant Physiol Biochem. 2017;115:183–99. https://doi.org/10.1016/j.plaphy.2017.03.020.
Article
CAS
PubMed
Google Scholar
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99. https://doi.org/10.1146/annurev.arplant.55.031903.141701.
Article
CAS
PubMed
Google Scholar
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–10. https://doi.org/10.1016/S1360-1385(02)02312-9.
Article
CAS
PubMed
Google Scholar
Sucu S, Yagci A, Yildirim K. Changes in morphological, physiological traits and enzyme activity of grafted and ungrafted grapevine rootstocks under drought stress. Erwerbs-obstbau. 2018;60(2):127–36. https://doi.org/10.1007/s10341-017-0345-7.
Article
Google Scholar
Yu JL, Yang L, Liu XB, Tang RJ, Wang Y, Ge HM, Wu MT, Zhang J, Zhao FG, Luan S, Lan WZ. Overexpression of poplar pyrabactin resistance-like abscisic acid receptors promotes abscisic acid sensitivity and drought resistance in transgenic Arabidopsis. PLoS ONE. 2016;11(12):17. https://doi.org/10.1371/journal.pone.0168040.
Article
CAS
Google Scholar
Kalladan R, Lasky JR, Sharma S, Kumar MN, Juenger TE, Des Marais DL, Verslues PE. Natural variation in 9-Cis-Epoxycartenoid dioxygenase 3 and ABA accumulation. Plant Physiol. 2019;179(4):1620–31. https://doi.org/10.1104/pp.18.01185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skubacz A, Daszkowska-Golec A, Szarejko I. The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci. 2016;7:1884. https://doi.org/10.3389/fpls.2016.0188.
Article
PubMed
PubMed Central
Google Scholar
Huang X, Chen MH, Yang LT, Li YR, Wu JM. Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech. 2014;17(1):59–64. https://doi.org/10.1007/s12355-014-0343-0.
Article
CAS
Google Scholar
De Zelicourt A, Colcombet J, Hirt H. The Role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. 2016;21(8):677–85. https://doi.org/10.1016/j.tplants.2016.04.004.
Article
CAS
PubMed
Google Scholar
Liu Y. Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep. 2011;31(1):1–12. https://doi.org/10.1007/s00299-011-1130-y.
Article
CAS
PubMed
Google Scholar
Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, Li Z, Kinoshita KE. JR Schroeder JI, An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Sci Rep. 2016;6(1):28941. https://doi.org/10.1038/srep28941.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng MC, Liao PM, Kuo WW, Lin TP. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013;162(3):1566–82. https://doi.org/10.1104/pp.113.221911.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JHM, Mueller-Roeber B. SALT-RESPONSIVE ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell. 2013;25(6):2115–31. https://doi.org/10.1105/tpc.113.113068.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGAX: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. https://doi.org/10.1093/molbev/msy096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterhouse AM, Procter JB, Martin D, Clamp M, Barton GJ. Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics. 2009;25(9):1189–91. https://doi.org/10.1093/bioinformatics/btp033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng W, Zhang H, Zhou X, Liu H, Liu Y, Li J, Han S, Wang Y. Subcellular localization of rice hexokinase (oshxk) family members in the mesophyll protoplasts of tobacco. Biol Plantarum. 2011;55(1):173–7. https://doi.org/10.1007/s10535-011-0025-7.
Article
CAS
Google Scholar
Hou YL, Meng K, Han Y, Ban QY, Wang B, Suo JT. The persimmon 9-lipoxygenase gene DkLOX3 plays positive roles in both promoting senescence and enhancing tolerance to abiotic stress. Front Plant Sci. 2015;6:1073. https://doi.org/10.3389/fpls.2015.01073.
Article
PubMed
PubMed Central
Google Scholar
Doneva D, Pál M, Brankova L, Szalai G, Tajti J, Khalil R. Ivanovska, Beti; Velikova V, Misheva S, Janda T, Peeva V, The effects of putrescine pre-treatment on osmotic stress responses in drought-tolerant and drought-sensitive wheat seedlings. Physiol Plantarum. 2021;171:200–16. https://doi.org/10.1111/ppl.13150.
Article
CAS
Google Scholar
Ma X, Chen C, Yang M, Dong X, Lv W, Meng Q. Cold-regulated protein (SlCOR413IM1) confers chilling stress tolerance in tomato plants. Plant Physiol Biochem. 2018;124:29–39. https://doi.org/10.1016/j.plaphy.2018.01.003.
Article
CAS
PubMed
Google Scholar
Watanabe N, Lam E. BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem. 2008;283(6):3200–10. https://doi.org/10.1074/jbc.M706659200.
Article
CAS
PubMed
Google Scholar
Bournonville CFG, Diaz-Ricci JC. Quantitative determination of superoxide in plant leaves using a modified NBT Staining. Method. 2011;22(3):268–71. https://doi.org/10.1002/pca.1275.
Article
CAS
Google Scholar
Livak K, Schmittgen T. Analysis of relative gene expression data using realtime quantitative and the 2−△△Ct method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. https://doi.org/10.1038/nbt.1621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang LG, Han Y, He QY. Cluster Profiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(1):545–51. https://doi.org/10.1093/nar/gkaa970.
Article
CAS
Google Scholar