Konappa N, Udayashankar AC, Krishnamurthy S, Pradeep CK, Chowdappa S, Jogaiah S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep. 2020;10(1):1–23.
Article
CAS
Google Scholar
Jogaiah S, Shetty HS. Ito S-i, Tran L-SP: Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum. Plant Physiol Biochem. 2016;105:109–17.
Article
CAS
PubMed
Google Scholar
Jagannath S, Konappa N, Lokesh A, Dasegowda T, Udayashankar AC, Chowdappa S, Cheluviah M, Satapute P, Jogaiah S. Bioactive compounds guided diversity of endophytic fungi from Baliospermum montanum and their potential extracellular enzymes. Anal Biochem. 2021;614: 114024.
Article
CAS
PubMed
Google Scholar
Shakeri A, Sharifi MJ, Fazly Bazzaz BS, Emami A, Soheili V, Sahebkar A, Asili J. Bioautography detection of antimicrobial compounds from the essential oil of salvia Pachystachys. Curr Bioact Compd. 2018;14(1):80–5.
Article
CAS
Google Scholar
Bazzaz BSF, Khameneh B, Ostad MRZ, Hosseinzadeh H. In vitro evaluation of antibacterial activity of verbascoside, lemon verbena extract and caffeine in combination with gentamicin against drug-resistant Staphylococcus aureus and Escherichia coli clinical isolates. Avicenna journal of phytomedicine. 2018;8(3):246.
CAS
Google Scholar
Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha V, Vidhya E, Praseetha P. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind Crops Prod. 2020;154: 112748.
Article
CAS
Google Scholar
Abubaker M, Adamd I, Mohammed A, Liang T, Zhang J. Gas Chromatography-Mass Spectrum andFourier-transform infrared spectroscopy analysis of Fixed Oil from Sudanese Ziziphus spina Christi Fruits Pulp. Progress in Chemical and Biochemical Research. 2020;4(3):278–94.
Google Scholar
Ralte L, Khiangte L, Thangjam NM, Kumar A, Singh YT. GC–MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci Rep. 2022;12(1):1–21.
Article
CAS
Google Scholar
Abishad P, Niveditha P, Unni V, Vergis J, Kurkure NV, Chaudhari S, Rawool DB, Barbuddhe SB. In silico molecular docking and in vitro antimicrobial efficacy of phytochemicals against multi-drug-resistant enteroaggregative Escherichia coli and non-typhoidal Salmonella spp. Gut pathogens. 2021;13(1):1–11.
Article
CAS
Google Scholar
Joshi M, Purwar R, Ali SW, Rajendran S. Antimicrobial textiles for health and hygiene applications based on eco-friendly natural products. In: Medical and Healthcare Textiles. Elsevier. 2010:84–92.
Alzohairy MA. Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment. Evidence-based complementary and alternative medicine : eCAM. 2016;2016:7382506.
Article
Google Scholar
Ospina Salazar DI, Hoyos Sanchez RA, Orozco Sanchez F, Arango Arteaga M, Gomez Londono LF. Antifungal activity of neem (Azadirachta indica: Meliaceae) extracts against dermatophytes. Acta Biológica Colombiana. 2015;20(3):181–92.
Article
Google Scholar
Mahmoud D, Hassanein N, Youssef K, Abou Zeid M. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens. Braz J Microbiol. 2011;42(3):1007–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Hawary SS, El-Tantawy ME, Rabeh MA, Badr WK. DNA fingerprinting and botanical study of Azadirachta indica A. Juss.(neem) family Meliaceae. Beni-Suef University
Journal of Basic and Applied Sciences. 2013;2(1):1–13.
Article
Google Scholar
Ali E, Islam MS, Hossen MI, Khatun MM, Islam MA. Extract of neem (Azadirachta indica) leaf exhibits bactericidal effect against multidrug resistant pathogenic bacteria of poultry. Veterinary medicine and science. 2021;7(5):1921–7.
Article
PubMed
PubMed Central
Google Scholar
Kumar PS, Debasis M, Goutam G, Panda CS. Biological action and medicinal properties of various constituent of Azadirachta indica (Meliaceae): an overview. Ann Biol Res. 2010;1(3):24–34.
Google Scholar
Jessinta S, Azhari H, Saiful N, Abdurahman H. Impact of geographic variation on physicochemical properties of neem (Azadirachta indica) seed oil. Int J Pharm Sci Res. 2014;5(10):4406–13.
Google Scholar
Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infection and drug resistance. 2019;12:3903–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology. 2018;4(3):482–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55.
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed research international 2016, 2016, 2475067.
World Health Organization. New report calls for urgent action to avert antimicrobial resistance crisis. Joint News Release. 29 April 2019. Available online: https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 20 April 2022).
Khameneh B, Iranshahy M, Soheili V, Bazzaz BSF. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control. 2019;8(1):1–28.
Article
Google Scholar
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, et al. Antibiotic resistance: a rundown of a global crisis. Infection and drug resistance. 2018;11:1645–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramani R, Narayanasamy M, Feussner KD. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech. 2017;7(3):172.
Article
PubMed
PubMed Central
Google Scholar
Manilal A, Merdekios B, Velappan JK, Paul JPV, Idhayadhulla A, Muthukumar C, Melkie M. An in vitro efficacy validation of mangrove associates. J Coast Life Med. 2014;2(7):560–5.
Google Scholar
Iga S, Iga A, Nicolescu A, Iga DP. Synthesis of D, L-α-Tocopheryl-α-D-mannopyranoside, a Potential Antiallergic and Antiinflammatory Compound, and its-α-D-mannofuranoside Isomer. Rev Chim. 2010;61(5):475–8.
CAS
Google Scholar
Kebede T, Gadisa E, Tufa A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE. 2021;16(3): e0249253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Sarraj FM. A Review on the impacts of Azadirachta indica on Multi-drug Resistant Extended Spectrum Beta Lactamase-positive of Escherichia coli and Klebsiella pneumonia. Advancements in Life Sciences. 2021;8(3):228–32.
CAS
Google Scholar
Latif MJ, Hassan SM, Mughal SS, Aslam A, Munir M, Shabbir N, Mushtaq M, Perveiz S. Therapeutic Potential of Azadirachta indica (Neem) and Their Active Phytoconstituents against Diseases Prevention. 2020.
Google Scholar
Dinagaran S, Sridhar S, Eganathan P. Chemical composition and antioxidant activities of black seed oil (Nigella sativa L.). International Journal of Pharmaceutical Sciences and Research. 2016;7(11):4473.
CAS
Google Scholar
Correa MF, Barbosa AJ, Teixeira LB, Duarte DA, Simoes SC, Parreiras-e-Silva LT, Balbino AM, Landgraf RG, Bouvier M, Costa-Neto CM. Pharmacological Characterization of 5-Substituted 1-[(2, 3-dihydro-1-benzofuran-2-yl) methyl] piperazines: Novel Antagonists for the Histamine H3 and H4 Receptors with Anti-inflammatory Potential. Front Pharmacol. 2017;8:825.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koona S, Budida S. Antibacterial Potential of the Extracts of the Leaves of Azadirachta indica Linn. Notulae Scientia Biologicae. 2011;3(1):65–9.
Article
Google Scholar
Setiawansyah A, Hakim A, Wirasisya DG. EVALUASI DAN IDENTIFIKASI GOLONGAN SENYAWA POTENSIAL ANTIBAKTERI PADA DAUN DAN KULIT BATANG MIMBA (Azhadirachta indica A. Juss) TERHADAP Escherichia coli. Jurnal Tumbuhan Obat
Indonesia. 2018;11(2):40–8.
Article
Google Scholar
Nithya M, Ragavendran C, Natarajan D. Antibacterial and free radical scavenging activity of a medicinal plant Solanum xanthocarpum. Int J Food Prop. 2018;21(1):313–27.
Article
CAS
Google Scholar
Amponin DE, Przybek-Skrzypecka J, Zyablitskaya M, Takaoka A, Suh LH, Nagasaki T, Trokel SL, Paik DC. Ex vivo anti-microbial efficacy of various formaldehyde releasers against antibiotic resistant and antibiotic sensitive microorganisms involved in infectious keratitis. BMC Ophthalmol. 2020;20(1):1–10.
Article
CAS
Google Scholar
Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des. 2012;80(3):434–9.
Article
CAS
PubMed
Google Scholar
Lee W, Woo E-R, Lee DG. Phytol has antibacterial property by inducing oxidative stress response in Pseudomonas aeruginosa. Free Radical Res. 2016;50(12):1309–18.
Article
CAS
Google Scholar
Pokhrel B, Rijal S, Raut S, Pandeya A. Investigations of antioxidant and antibacterial activity of leaf extracts of Azadirachta indica. Afr J Biotech. 2015;14(46):3159–63.
Article
Google Scholar
Tirumalasetty J, Anuradha B, Praveena A. Antimicrobial activity of methanolic extracts of Azadirachta indica, Rosmarinus officinalis and Lagenaria siceraria leaves on some important pathogenic organisms. J Chem Pharm Res. 2014;6:766–70.
Google Scholar
Mistry KS, Sanghvi Z, Parmar G, Shah S. The antimicrobial activity of Azadirachta indica, Mimusops elengi, Tinospora cardifolia, Ocimum sanctum and 2% chlorhexidine gluconate on common endodontic pathogens: An in vitro study. European journal of dentistry. 2014;8(2):172.
Article
PubMed
PubMed Central
Google Scholar
Dzulkarnain S, bin Abdul Rahim I. Antimicrobial activity of methanolic Neem extract on wound infection bacteria. In: International Conference on Biological, Chemical and Environmental Sciences: 2014;4:72–5.
Parekh J, Jadeja D, Chanda S. Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turk J Biol. 2006;29(4):203–10.
Google Scholar
Mohammed HA, Al Fadhil AO. Antibacterial activity of Azadirachta indica (Neem) leaf extract against bacterial pathogens in Sudan. Afr J Med Sci. 2017;3:246–2512.
Google Scholar
Aziz F, Taqdees M, Ifrah I, Sayyada G. Phytochemical screening and antibacterial activity of neem extracts on uropathogens. Pure Appl Biol. 2020;9(1):148–53.
CAS
Google Scholar
Faujdar SS, Bisht D, Sharma A. Antibacterial potential of neem (Azadirachta indica) against uropathogens producing beta-lactamase enzymes: A clue to future antibacterial agent? Biomedical and Biotechnology Research Journal (BBRJ). 2020;4(3):232.
Article
Google Scholar
Okemo P, Mwatha W, Chhabra S, Fabry W. The kill kinetics of Azadirachta indica A. Juss.(Meliaceae) extracts on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. African Journal of Science and Technology. 2001;2(2):113–8.
Google Scholar
Francine U, Jeannette U, Pierre RJ. Assessment of antibacterial activity of neem plant (Azadirachta indica) on Staphylococcus aureus and Escherichia coli. J Med Plants Stud. 2015;3(4):85–91.
Google Scholar
Eid A, Jaradat N, Elmarzugi N. A Review of chemical constituents and traditional usage of Neem plant (Azadirachta Indica). Palestinian Medical and Pharmaceutical Journal. 2017;2(2):75–81.
Google Scholar
Uchegbu M, Okoli I, Esonu B, Iloeje M. The grovving importance of neem (Azadirachta indica A. Juss) in agriculture, industry, medicine and Eenvironment: A review. Research Journal of Medicinal Plant. 2011;5(3):230–45.
Article
Google Scholar
Lynch AS. Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view Biochemical pharmacology. 2006;71(7):949–56.
CAS
PubMed
Google Scholar
Chetri S, Bhowmik D, Paul D, Pandey P, Chanda DD, Chakravarty A, Bora D, Bhattacharjee A. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019;19(1):210.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beg M, Ansari S, Athar F. Molecular docking studies of Calotropis gigantea phytoconstituents against Staphylococcus aureus tyrosyl-tRNA synthetase protein. J Bacteriol Mycol Open Access. 2020;8(3):78–91.
Article
Google Scholar
Sangai NP, Patel CN, Pandya HA. Ameliorative effects of quercetin against bisphenol A-caused oxidative stress in human erythrocytes: an in vitro and in silico study. Toxicology research. 2018;7(6):1091–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sadiq S, Rana NF, Zahid MA, Zargaham MK, Tanweer T, Batool A, Naeem A, Nawaz A, Muneer Z, Siddiqi AR. Virtual Screening of FDA-Approved Drugs against LasR of Pseudomonas aeruginosa for Antibiofilm Potential. Molecules. 2020;25(16):3723.
Article
CAS
PubMed Central
Google Scholar
Navratna V, Nadig S, Sood V, Prasad K, Arakere G, Gopal B. Molecular basis for the role of Staphylococcus aureus penicillin binding protein 4 in antimicrobial resistance. J Bacteriol. 2010;192(1):134–44.
Article
CAS
PubMed
Google Scholar
Rave A, Kuss A, Peil G, Ladeira S, Villarreal J, Nascente P. Biochemical identification techniques and antibiotic susceptibility profile of lipolytic ambiental bacteria from effluents. Braz J Biol. 2019;79(4):555–65.
Article
CAS
PubMed
Google Scholar
CLSI: Performance standards for antimicrobial susceptibility testing. Approved Standard M100 2016;35(3):16–38.
Ney FP, Malco DCL, Senoro DB, Catajay-Mani M. The bio-mechanical properties of coco wood applied with Neem extracts: a potential preservative for sustainable building in Marinduque. Philippines Sustainable Environment Research. 2019;29(1):1–13.
CAS
Google Scholar
Gennaro L. Extraction technology for medicinal and aromatic Plant. United Nations Industrial Development Organization and the International Centre for Science and High Technology, Trieste, Italy P, 2008, 23.
Costa C, Bevilaqua C, Camurça-Vasconcelos A, Maciel M, Morais S, Castro C, Braga R, Oliveira L. In vitro ovicidal and larvicidal activity of Azadirachta indica extracts on Haemonchus contortus. Small Rumin Res. 2008;74(1–3):284–7.
Article
Google Scholar
RAI AK, Joshi R. Evaluation of antimicrobial properties of fruit extracts of Terminalia chebula against dental caries pathogens. 2009.
Google Scholar
Kumar A, Gill JPS, Bedi JS, Kumar A. Pesticide residues in Indian raw honeys, an indicator of environmental pollution. Environ Sci Pollut Res. 2018;25(34):34005–16.
Article
CAS
Google Scholar
A Adam A, A. Ahmed S, A Mohamed T, A Azrag R, E Mustfa S, AA Hamdi O. Evaluation of repellent activities of the essential oil of Ocimum basilicum against Anopheles mosquito and formulation of mosquito repellent cream. Biomedical Research and Clinical Practice. 2019;4:2–5.
Kalt F, Cock I. Gas chromatography-mass spectroscopy analysis of bioactive Petalostigma extracts: Toxicity, antibacterial and antiviral activities. Pharmacogn Mag. 2014;10(Suppl 1):S37.
CAS
PubMed
PubMed Central
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000;28(1):235–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pisano MB, Kumar A, Medda R, Gatto G, Pal R, Fais A, Era B, Cosentino S, Uriarte E, Santana L. Antibacterial activity and molecular docking studies of a selected series of hydroxy-3-arylcoumarins. Molecules. 2019;24(15):2815.
Article
PubMed Central
Google Scholar
Kulanthaivel L, Jeyaraman J, Biswas A, Subbaraj GK, Santhoshkumar S. Identification of potential inhibitors for Penicillinbinding protein (PBP) from Staphylococcus aureus. Bioinformation. 2018;14(9):471.
Article
PubMed
PubMed Central
Google Scholar
Varkey DR, Kingsley DJ, Abraham J. Antimicrobial Activity and In-Silico Analysis of 3, 5, 6-Trichloro-2-Pyridinol. RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES. 2015;6(4):272–84.
CAS
Google Scholar
Rahmania TA, Ritmaleni R, Setyowati EP. In silico and in vitro assay of Hexagamavunon-6 analogs, Dibenzilyden-N-Methyl-4-piperidone as antibacterial agents. Journal of Applied Pharmaceutical Science. 2020;10(03):039–43.
Article
CAS
Google Scholar
Release S: 3: Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, USA, 2020.
Toukmaji AY, Board JA Jr. Ewald summation techniques in perspective: a survey. Comput Phys Commun. 1996;95(2–3):73–92.
Article
CAS
Google Scholar
Mogana R, Adhikari A, Tzar M, Ramliza R, Wiart C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC complementary medicine and therapies. 2020;20(1):1–11.
Article
Google Scholar
Kouidhi B, Zmantar T, Jrah H, Souiden Y, Chaieb K, Mahdouani K, Bakhrouf A. Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens. Ann Clin Microbiol Antimicrob. 2011;10(1):1–7.
Article
CAS
Google Scholar