Hemminga M, Duarte CM. Seagrass ecology. Cambridge: Cambridge University Press; 2000.
Book
Google Scholar
Larkum AW, Orth RRJ, Duarte CM. Seagrasses: biology, ecology, and conservation. Berlin: Springer; 2006.
Google Scholar
Mohr W, Lehnen N, Ahmerkamp S, Marchant HK, Graf JS, Tschitschko B, et al. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature. 2021;600(7887):105–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Z, Liu S, Zhang J, Wu Y, Zhao C, Lian Z, et al. Eutrophication indirectly reduced carbon sequestration in a tropical seagrass bed. Plant Soil. 2018;426(1–2):135–52.
Article
CAS
Google Scholar
Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A. 2009;106(30):12377–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burkholder JM, Tomasko DA, Touchette BW. Seagrasses and eutrophication. J Exp Mar Biol Ecol. 2007;350(1):46–72.
Article
Google Scholar
de Boer WF. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia. 2007;591(1):5–24.
Article
CAS
Google Scholar
Bishop MJ, Kelaher BP. Replacement of native seagrass with invasive algal detritus: impacts to estuarine sediment communities. Biol Invasions. 2013;15(1):45–59.
Article
Google Scholar
Liu S, Jiang Z, Zhang J, Wu Y, Lian Z, Huang X. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea. Mar Pollut Bull. 2016;110(1):274–80.
Article
CAS
PubMed
Google Scholar
Holmer M, Bondgaard EJ. Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquat Bot. 2001;70(1):29–38.
Article
CAS
Google Scholar
Pregnall A, Smith R, Kursar T, Alberte R. Metabolic adaptation of Zostera marina (eelgrass) to diurnal periods of root anoxia. Mar Biol. 1984;83(2):141–7.
Article
CAS
Google Scholar
Pregnall A. Effects of aerobic versus anoxic conditions on glutamine synthetase activity in eelgrass (Zostera marina L.) roots: regulation of ammonium assimilation potential. J Exp Mar Biol Ecol. 2004;311(1):11–24.
Article
CAS
Google Scholar
Govers LL, de Brouwer JHF, Suykerbuyk W, Bouma TJ, Lamers LPM, Smolders AJP, et al. Toxic effects of increased sediment nutrient and organic matter loading on the seagrass Zostera noltii. Aquat Toxicol. 2014;155:253–60.
Article
CAS
PubMed
Google Scholar
Holmer M, Hasler-Sheetal H. Sulfide intrusion in seagrasses assessed by stable sulfur isotopes—a synthesis of current results. Front Mar Sci. 2014;1(64). https://doi.org/10.3389/fmars.2014.00064).
Erskine JM, Koch MS. Sulfide effects on Thalassia testudinum carbon balance and adenylate energy charge. Aquat Bot. 2000;67(4):275–85.
Article
CAS
Google Scholar
Macreadie PI, Schliep MT, Rasheed MA, Chartrand KM, Ralph PJ. Molecular indicators of chronic seagrass stress: a new era in the management of seagrass ecosystems? Ecol Indic. 2014;38:279–81.
Article
Google Scholar
Orth RJ, Carruthers TJ, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, et al. A global crisis for seagrass ecosystems. Bioscience. 2006;56(12):987–96.
Article
Google Scholar
Kumar M, Ralph P. Systems biology of marine ecosystems. Switzerland: Springer; 2017.
Book
Google Scholar
Kumar M, Kuzhiumparambil U, Pernice M, Jiang Z, Ralph PJ. Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res. 2016;16:76–92.
Article
Google Scholar
Hammer KJ, Borum J, Hasler-Sheetal H, Shields EC, Sand-Jensen K, Moore KA. High temperatures cause reduced growth, plant death and metabolic changes in eelgrass Zostera marina. Mar Ecol Prog Ser. 2018;604:121–32.
Article
CAS
Google Scholar
Hasler-Sheetal H, Fragner L, Holmer M, Weckwerth W. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina. Metabolomics. 2015;11(5):1208–18.
Article
CAS
Google Scholar
de Kock W, Hasler-Sheetal H, Holmer M, Tsapakis M, Apostolaki ET. Metabolomics and traditional indicators unveil stress of a seagrass (Cymodocea nodosa) meadow at intermediate distance from a fish farm. Ecol Indic. 2020;109:105765.
Article
CAS
Google Scholar
Pérez M, Invers O, Ruiz JM, Frederiksen MS, Holmer M. Physiological responses of the seagrass Posidonia oceanica to elevated organic matter content in sediments: An experimental assessment. J Exp Mar Biol Ecol. 2007;344(2):149–60.
Article
CAS
Google Scholar
Arnold T, Freundlich G, Weilnau T, Verdi A, Tibbetts IR. Impacts of groundwater discharge at myora springs (north Stradbroke Island, Australia) on the phenolic metabolism of eelgrass, Zostera muelleri, and grazing by the juvenile rabbitfish, Siganus fuscescens. Plos One. 2014;9(8):e104738.
Article
PubMed
PubMed Central
Google Scholar
Chiu S-H, Huang Y-H, Lin H-J. Carbon budget of leaves of the tropical intertidal seagrass Thalassia hemprichii. Estuar Coast Shelf Sci. 2013;125:27–35.
Article
CAS
Google Scholar
Jiang Z, Liu S, Zhang J, Zhao C, Wu Y, Yu S, et al. Newly discovered seagrass beds and their potential for blue carbon in the coastal seas of Hainan Island, South China Sea. Mar Pollut Bull. 2017;125(1):513–21.
Article
CAS
PubMed
Google Scholar
Li Q, Huang W, Zhou Y. A preliminary study of eutrophication and occurrence of red tides in Xincun harbour. T Oceanol Limnol. 2010;4:9–15.
Google Scholar
Huang X, Jiang Z, Liu S, Yu S, Wu Y, Zhang J. Study on ecology of tropical seagrass in China. Beijing: Science China Press; 2019.
Google Scholar
van Katwijk MM, Wijgergangs LJM. Effects of locally varying exposure, sediment type and low-tide water cover on Zostera marina recruitment from seed. Aquat Bot. 2004;80(1):1–12.
Article
Google Scholar
Hofmann RW, Jahufer MZ. Tradeoff between biomass and flavonoid accumulation in white clover reflects contrasting plant strategies. Plos One. 2011;6(4):e18949.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grime J. Plant strategies, vegetation processes, and ecosystem properties. Chichester: John Wiley and Sons; 2001. p. 417.
Google Scholar
Grignon-Dubois M, Rezzonico B. Phenolic chemistry of the seagrass Zostera noltei Hornem. Part 1: first evidence of three infraspecific flavonoid chemotypes in three distinctive geographical regions. Phytochemistry. 2018;146:91–101.
Article
CAS
PubMed
Google Scholar
Beer S, Björk M. Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquat Bot. 2000;66(1):69–76.
Article
CAS
Google Scholar
Ralph PJ, Gademann R, Dennison WC. In situ seagrass photosynthesis measured using a submersible, pulse-amplitude modulated fluorometer. Mar Biol. 1998;132(3):367–73.
Article
Google Scholar
Ivanov B, Khorobrykh S. Participation of photosynthetic electron transport in production and scavenging of reactive oxygen species. Antioxid Redox Signal. 2003;5(1):43–53.
Article
CAS
PubMed
Google Scholar
Murchie EH, Niyogi KK. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol. 2011;155(1):86–92.
Article
CAS
PubMed
Google Scholar
Hanke GT, Endo T, Satoh F, Hase T. Altered photosynthetic electron channelling into cyclic electron flow and nitrite assimilation in a mutant of ferredoxin: NADP (H) reductase. Plant Cell Environ. 2008;31(7):1017–28.
Article
CAS
PubMed
Google Scholar
Marbà N, Duarte CM, Terrados J, Halun Z, Gacia E, Fortes MD. Effects of seagrass rhizospheres on sediment redox conditions in SE Asian coastal ecosystems. Estuar Coast. 2010;33(1):107–17.
Article
CAS
Google Scholar
Koch MS, Erskine JM. Sulfide as a phytotoxin to the tropical seagrass Thalassia testudinum: interactions with light, salinity and temperature. J Exp Mar Biol Ecol. 2001;266(1):81–95.
Article
CAS
Google Scholar
Oakes JM, Connolly RM. Causes of sulfur isotope variability in the seagrass, Zostera capricorni. J Exp Mar Biol Ecol. 2004;302(2):153–64.
Article
CAS
Google Scholar
Peyer SM, Maricle BR, Young DR. Effect of sulfide and the role of root mass on metabolic fluxes in the seagrass Zostera marina. Environ Exp Bot. 2020;180:104267.
Article
CAS
Google Scholar
Zhang Q, Liu J, Zhang P-D, Liu Y-S, Xu Q. Effect of silt and clay percentage in sediment on the survival and growth of eelgrass Zostera marina: transplantation experiment in swan Lake on the eastern coast of Shandong peninsula, China. Aquat Bot. 2015;122:15–9.
Article
Google Scholar
D'Mello JF. Amino acids in higher plants. Osfordshire: CABI; 2015.
Book
Google Scholar
Pirc H, Wollenweber B. Seasonal changes in nitrogen, free amino acids, and C/N ratio in Mediterranean seagrasses. Mar Ecol. 1988;9(2):167–79.
Article
CAS
Google Scholar
Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, et al. Making sense of low oxygen sensing. Trends Plant Sci. 2012;17(3):129–38.
Article
CAS
PubMed
Google Scholar
Yordanova RY, Popova LP. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plant. 2007;29(6):535–41.
Article
CAS
Google Scholar
Good AG, Muench DG. Long-term anaerobic metabolism in root tissue (metabolic products of pyruvate metabolism). Plant Physiol. 1993;101(4):1163–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikiforova V, Bielecka M, Gakiere B, Krueger S, Rinder J, Kempa S, et al. Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids. 2006;30(2):173–83.
Article
CAS
PubMed
Google Scholar
Hasler-Sheetal H, Holmer M. Sulfide intrusion and detoxification in the seagrass Zostera marina. Plos One. 2015;10(6):e0129136.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cannac M, Ferrat L, Pergent-Martini C, Pergent G, Pasqualini V. Effects of fish farming on flavonoids in Posidonia oceanica. Sci Total Environ. 2006;370(1):91–8.
Article
CAS
PubMed
Google Scholar
Bitam F, Ciavatta ML, Carbone M, Manzo E, Mollo E, Gavagnin M. Chemical analysis of flavonoid constituents of the seagrass Halophila stipulacea: first finding of malonylated derivatives in marine phanerogams. Biochem Syst Ecol. 2010;38(4):686–90.
Article
CAS
Google Scholar
McMillan C. Sulfated flavonoids and leaf morphology in the Halophila ovalis—H. minor complex (Hydrocharitaceae) of the indo-Pacific Ocean. Aquat Bot. 1986;25:63–72.
Article
CAS
Google Scholar
Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, et al. Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell. 2002;14(10):2481–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groner ML, Burge CA, Cox R, Rivlin ND, Turner M, Van Alstyne KL, et al. Oysters and eelgrass: potential partners in a high pCO2 ocean. Ecology. 2018;99(8):1802–14.
Article
PubMed
Google Scholar
Waterman PG, Ross JA, Mckey DB. Factors affecting levels of some phenolic compounds, digestibility, and nitrogen content of the mature leaves of Barteria fistulosa (Passifloraceae). J Chem Ecol. 1984;10(3):387–401.
Article
CAS
PubMed
Google Scholar
Grignon-Dubois M, Rezzonico B. Phenolic fingerprint of the seagrass Posidonia oceanica from four locations in the Mediterranean Sea: first evidence for the large predominance of chicoric acid. Bot Mar. 2015;58(5):379–91.
Article
CAS
Google Scholar
Rowley DC, Hansen MS, Rhodes D, Sotriffer CA, Ni H, McCammon JA, et al. Thalassiolins A–C: new marine-derived inhibitors of HIV cDNA integrase. Bioorgan Med Chem. 2002;10(11):3619–25.
Article
CAS
Google Scholar
Harborne JB. Flavonoid sulphates: a new class of Sulphur compounds in higher plants. Phytochemistry. 1975;14(5–6):1147–55.
Article
CAS
Google Scholar
McMillan C, Zapata O, Escobar L. Sulphated phenolic compounds in seagrasses. Aquat Bot. 1980;8:267–78.
Article
CAS
Google Scholar
Nissen P, Benson AA. Absence of selenate esters and “selenolipid” in plants. Biochim Biophys Acta. 1964;82(2):400–2.
Article
CAS
PubMed
Google Scholar
Grignon-Dubois M, Rezzonico B. First phytochemical evidence of chemotypes for the seagrass Zostera noltii. Plants. 2012;1(2):27–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yiu J-C, Tseng M-J, Liu C-W. Exogenous catechin increases antioxidant enzyme activity and promotes flooding tolerance in tomato (Solanum lycopersicum L.). Plant Soil. 2011;344(1–2):213–25.
Article
CAS
Google Scholar
Trantas EA, Koffas MAG, Xu P, Ververidis F. When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. Front Plant Sci. 2015;6:7. https://doi.org/10.3389/fpls.2015.00007.
Livingston RJ, McGlynn SE, Niu X. Factors controlling seagrass growth in a gulf coastal system: water and sediment quality and light. Aquat Bot. 1998;60(2):135–59.
Article
Google Scholar
Li F, Qin Y, Zhu L, Xie Y, Liang S, Hu C, et al. Effects of fragment size and sediment heterogeneity on the colonization and growth of Myriophyllum spicatum. Ecol Eng. 2016;95:457–62.
Article
Google Scholar
Liu L, Xiang-Qi B, Wan J-Y, Dong B-C, Luo F-L, Li H-L, et al. Impacts of sediment type on the performance and composition of submerged macrophyte communities. Aquat Ecol. 2016;51(1):1–10.
Google Scholar
Smart JWBM. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology. 1986;67(5):1328–40.
Article
Google Scholar
Jiang Z, Zhao C, Yu S, Liu S, Cui L, Wu Y, et al. Contrasting root length, nutrient content and carbon sequestration of seagrass growing in offshore carbonate and onshore terrigenous sediments in the South China Sea. Sci Total Environ. 2019;662:151–9.
Article
CAS
PubMed
Google Scholar
Marbà N, Díaz-Almela E, Duarte CM. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol Conserv. 2014;176:183–90.
Article
Google Scholar
Cayabyab NM, Enríquez S. Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study. New Phytol. 2007;176(1):108–23.
Article
PubMed
Google Scholar
Enríquez S, Agustí S, Duarte CM. Light absorption by marine macrophytes. Oecologia. 1994;98(2):121–9.
Article
PubMed
Google Scholar
Carr H, Björk M. A methodological comparison of photosynthetic oxygen evolution and estimated electron transport rate in tropical ULVA (Chlorophyceae) species under different light and inorganic carbon conditions. J Phycol. 2010;39(6):1125–31.
Article
Google Scholar
González-Guerrero LA, Vásquez-Elizondo RM, López-Londoño T, Hernán G, Iglesias-Prieto R, Enríquez S. Validation of parameters and protocols derived from chlorophyll a fluorescence commonly utilised in marine ecophysiological studies. Funct Plant Biol. 2022;49:517–32.
Silva J, Sharon Y, Santos R, Beer S. Measuring seagrass photosynthesis: methods and applications. Aquat Biol. 2009;7(1–2):127–41.
Article
Google Scholar
Li HL, Wang YY, An SQ, Zhi YB, Lei GC, Zhang MX. Sediment type affects competition between a native and an exotic species in coastal China. Sci Rep. 2014;4:6748.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82(3):222–37.
Article
CAS
Google Scholar
Enríquez S, Borowitzka MA. The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Chlorophyll a fluorescence in aquatic sciences: methods and applications. Dordrecht: Springer; 2010. p. 187–208.
Chapter
Google Scholar
Jiang ZJ, Huang XP, Zhang JP. Effects of CO2 enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. J Integr Plant Biol. 2010;52(10):904–13.
Article
CAS
PubMed
Google Scholar
Folk RL, Andrews P, Lewis DW. Detrital sedimentary rock classification and nomenclature for use in New Zealand. N Z J Geol Geophys. 1970;13(4):937–68.
Article
Google Scholar
Heiri O, Lotter AF, Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol. 2001;25(1):101–10.
Article
Google Scholar