Wen K, Fang X, Yang J, Yao Y, Nandakumar K, Salem M, et al. Recent research on flavonoids and their biomedical applications. Curr Med Chem. 2021;28(5):1042–66.
Article
CAS
PubMed
Google Scholar
Peluso I, Miglio C, Morabito G, Ioannone F, Serafini M. Flavonoids and immune function in human: a systematic review. Crit Rev Food Sci Nutr. 2015;55(3):383–95.
Article
CAS
PubMed
Google Scholar
Yi Y. Regulatory roles of flavonoids on Inflammasome activation during inflammatory responses. Mol Nutr Food Res. 2018;62(13):1800147.
Article
CAS
Google Scholar
Zeng X, Xi Y, Jiang W. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: a review. Crit Rev Food Sci Nutr. 2019;59(13):2125–35.
Article
CAS
PubMed
Google Scholar
Buer C, Imin N, Djordjevic M. Flavonoids: new roles for old molecules. J Integr Plant Biol. 2010;52(1):98–111.
Article
CAS
PubMed
Google Scholar
Yu L, Huang D, Gu J, Pan D, Tan Y, Huang R, et al. Identification of Isoflavonoid biosynthesis-related R2R3-MYB transcription factors in Callerya speciosa (champ. Ex Benth.) Schot using transcriptome-based gene Coexpression analysis. Int J Genomics. 2021;2021:9939403.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brown D, Rashotte A, Murphy A, Normanly J, Tague B, Peer W, et al. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 2001;126(2):524–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Chen Y, Zhang H, Chen J, Cao J, Chen Q, et al. Polymethoxyflavones from citrus inhibited gastric cancer cell proliferation through inducing apoptosis by upregulating RARβ, both in vitro and in vivo. Food Chem Toxicol. 2020;146:111811.
Article
CAS
PubMed
Google Scholar
Lai C, Wu C, Ho C, Pan M. Disease chemopreventive effects and molecular mechanisms of hydroxylated polymethoxyflavones. Biofactors. 2015;41(5):301–13.
Article
CAS
PubMed
Google Scholar
Zeng S, Li S, Xiao P, Cai Y, Chu C, Chen B, et al. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Sci Adv. 2020;6(1):eaax6208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uckoo R, Jayaprakasha G, Vikram A, Patil B. Polymethoxyflavones isolated from the Peel of Miaray mandarin (Citrus miaray) have biofilm inhibitory activity in Vibrio harveyi. J Agric Food Chem. 2015;63(32):7180–9.
Article
CAS
PubMed
Google Scholar
Guo S, Geng Z, Zhang W, Liang J, Wang C, Deng Z, et al. The chemical composition of essential oils from Cinnamomum camphora and their insecticidal activity against the stored product pests. Int J Mol Sci. 2016;17(11):1836.
Article
PubMed Central
CAS
Google Scholar
Chen J, Tang C, Zhou Y, Zhang R, Ye S, Zhao Z, et al. Anti-inflammatory property of the essential oil from Cinnamomum camphora (Linn.) Presl leaves and the evaluation of its underlying mechanism by using metabolomics analysis. Molecules. 2020;25(20):4796.
Article
CAS
PubMed Central
Google Scholar
Chen W, Vermaak I, Viljoen A. Camphor—a fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon—a review. Molecules. 2013;18(5):5434–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breitmaier E. Terpenes: Importance, general structure, and biosynthesis. In Terpenes—Flavors, Fragrances, Pharmaca, Pheromones. Weinheim: WILEY-VCH; 2006.
Hemmerlin A, Harwood J, Bach T. A raison d’etre for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res. 2012;51(2):95–148.
Article
CAS
PubMed
Google Scholar
Hemmerlin A. Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis. Plant Sci. 2013;203-204:41–54.
Article
CAS
PubMed
Google Scholar
Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S. Genomewide identification and characterization of novel genes involved in terpenoid biosynthesis in salvia miltiorrhiza. J Exp Bot. 2012;63(7):2809–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Zheng T, Ye C, Huannixi W, Yakefu Z, Meng Y, et al. Algicidal properties of extracts from Cinnamomum camphora fresh leaves and their main compounds. Ecotoxicol Environ Saf. 2018;163:594–603.
Article
CAS
PubMed
Google Scholar
Huang L, Yang L, Zou Y, Luo S, Wang X, Liang Y, et al. Antibacterial activity and mechanism of three isomeric terpineols of Cinnamomum longepaniculatum leaf oil. Folia Microbiol (Praha). 2021;66(1):59–67.
Article
CAS
Google Scholar
Hou J, Zhang J, Zhang B, Jin X, Zhang H, Jin Z. Transcriptional analysis of metabolic pathways and regulatory mechanisms of essential oil biosynthesis in the leaves of Cinnamomum camphora (L.) Presl. Front Genet. 2020;11:598714.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Zheng Y, Zhong Y, Wu Y, Li Z, Xu L, et al. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genomics. 2018;19(1):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gang Z, Liu B, Rohwer J, Ferguson D, Yang Y. Leaf epidermal micromorphology defining the clades in Cinnamomum (Lauraceae). PhytoKeys. 2021;182:125–48.
Article
PubMed
PubMed Central
Google Scholar
Liu Z, Mo K, Fei S, Zu Y, Yang L. Efficient approach for the extraction of proanthocyanidins from Cinnamomum longepaniculatum leaves using ultrasonic irradiation and an evaluation of their inhibition activity on digestive enzymes and antioxidant activity in vitro. J Sep Sci. 2017;40(15):3100–13.
Article
CAS
PubMed
Google Scholar
Li L, Li Z, Yin Z, Wei Q, Jia R, Zhou L, et al. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum longepaniculatum. Int J Clin Exp Med. 2014;7:1721–7.
PubMed
PubMed Central
Google Scholar
Tao C, Wei Q, Yin Z, Zhou L, Jia R, Xu J, et al. Antifungal activity of essential oil from Cinnamomum longepaniculatum leaves against three dermatophytes in vitro. Afr J Pharm Pharmaco. 2013;7:1148–52.
Article
CAS
Google Scholar
Zhou W, Wei Q, Feng R, Liu Y, Liang H, Li J, et al. Diversity and spatial distribution of endophytic fungi in Cinnamomum longepaniculatum of Yibin, China. Arch Microbiol. 2021;203(6):3361–72.
Article
CAS
PubMed
Google Scholar
Weston L, Mathesius U. Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol. 2013;39(2):283–97.
Article
CAS
PubMed
Google Scholar
Croft K. Dietary polyphenols: antioxidants or not? Arch Biochem Biophys. 2016;595:120–4.
Article
CAS
PubMed
Google Scholar
Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012;196:67–76.
Article
CAS
PubMed
Google Scholar
Bais A, Lucas R, Bornman J, Williamson C, Sulzberger B, Austin A, et al. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP environmental effects assessment panel, update 2017. Photochem Photobiol Sci. 2018;17(2):127–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 2005;7(6):581–91.
Article
CAS
PubMed
Google Scholar
Zhang J, Subramanian S, Stacey G, Yu O. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J. 2009;57(1):171–83.
Article
CAS
PubMed
Google Scholar
Falcone Ferreyra M, Rius S, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222.
CAS
PubMed
PubMed Central
Google Scholar
Elarabi N, Abdelhadi A, Sief-Eldein A, Ismail I, Abdallah N. Overexpression of chalcone isomerase a gene in Astragalus trigonus for stimulating apigenin. Sci Rep. 2021;11(1):24176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mani R, Natesan V. Chrysin: sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry. 2018;145:187–96.
Article
CAS
PubMed
Google Scholar
Zhang J, Fu X, Yang L, Wen H, Zhang L, Liu F, et al. Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro. Biomed Pharmacother. 2020;129:110364.
Article
CAS
PubMed
Google Scholar
Bernatova I. Biological activities of (−)-epicatechin and (−)-epicatechin-containing foods: focus on cardiovascular and neuropsychological health. Biotechnol Adv. 2018;36(3):666–81.
Article
CAS
PubMed
Google Scholar
Bansal S, Vyas S, Bhattacharya S, Sharma M. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat Prod Rep. 2013;30(11):1438–54.
Article
CAS
PubMed
Google Scholar
Berger A, Latimer S, Stutts L, Soubeyrand E, Block A, Basset G. Kaempferol as a precursor for ubiquinone (coenzyme Q) biosynthesis: an atypical node between specialized metabolism and primary metabolism. Curr Opin Plant Biol. 2022;66:102165.
Article
CAS
PubMed
Google Scholar
Lee S, Seol H, Eom S, Lee L, Kim C, Park J, et al. Hydroxy Pentacyclic triterpene acid, Kaempferol, inhibits the human 5-Hydroxytryptamine type 3A receptor activity. Int J Mol Sci. 2022;23(1):544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tripoli E, Guardia M, Giammanco S, Majo D, Giammanco M. Citrus flavonoids: molecular structure, biological activity and nutritional properties. Food Chem. 2007;104:466–79.
Article
CAS
Google Scholar
Kurowska E, Manthey J, Casaschi A, Theriault A. Modulation of HepG2 cell net apolipoprotein B secretion by the Citrus Polymethoxyflavone, tangeretin. Lipids. 2004;39(2):143–51.
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
Article
CAS
PubMed
Google Scholar
Wang Y, Qian J, Cao J, Wang D, Liu C, Yang R, et al. Antioxidant capacity, anticancer ability and flavonoids composition of 35 citrus (Citrus reticulata Blanco) varieties. Molecules. 2017;22(7):1114.
Article
PubMed Central
CAS
Google Scholar
Zhang G, Huang Q, Bi X, Liu Y, Yuan Z. Analysis of endophytic bacterial community diversity and metabolic correlation in Cinnamomum camphora. Arch Microbiol. 2020;202(1):181–9.
Article
CAS
PubMed
Google Scholar
Yu H, Ren X, Yang F, Xie Y, Guo Y, Cheng Y, et al. Antimicrobial and anti-dust mite efficacy of Cinnamomum camphora chvar. Borneol essential oil using pilot-plant neutral cellulase-assisted steam distillation. Lett Appl Microbiol. 2022;74(2):258–67.
Article
CAS
PubMed
Google Scholar
Jiang H, Wang J, Song L, Cao X, Yao X, Tang F, et al. GC*GC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules. 2016;21(4):423.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu W, Gao H, Jiang X, Yang H. Analysis on constituents and contents in leaf essential oil from three chemical types of Cinnamum camphora. Front Environ Sci Engin. 2012;6(2):288–93.
Article
CAS
Google Scholar
Chen F, Ro D, Petri J, Gershenzon J, Bohlmann J, Pichersky E, et al. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 2004;135(4):1956–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Fan G, He J. Advances on limonene biotransformation and related enzymes. Sci Technol Food Ind. 2019;40:317–25.
Google Scholar
Serrano S, Mendo S, Caetano T. Haloarchaea have a high genomic diversity for the biosynthesis of carotenoids of biotechnological interest. Res Microbiol. 2021;20:103919.
Google Scholar
Ren Y, Liu S, Jin G, Yang X, Zhou Y. Microbial production of limonene and its derivatives: achievements and perspectives. Biotechnol Adv. 2020;44:107628.
Article
CAS
PubMed
Google Scholar
Thomsett M, Moore J, Buchard A, Stockman R, Howdle S. New renewably-sourced polyesters from limonene-derived monomers. Green Chem. 2019;21:149–56.
Article
CAS
Google Scholar
Chandran S, Kealey J, Reeves C. Microbial production of isoprenoids. Process Biochem. 2011;46(9):1703–10.
Article
CAS
Google Scholar
Grabherr M, Haas B, Yassour M, Levin J, Thompson D, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S, Garcia-Gomez J, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love M, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson M, McCarthy D, Smyth G. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Chen H, Zhang Y, Thomas H, Frank M, He Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):9.
Article
CAS
Google Scholar