Hörtensteiner S. Chlorophyll degradation during senescence. Annu Rev Plant Biol. 2006;57:55–77.
Article
PubMed
CAS
Google Scholar
Woo HR, Kim HJ, Nam HG, Lim PO. Plant leaf senescence and death - regulation by multiple layers of control and implications for aging in general. J Cell Sci. 2013;126(Pt 21):4823–33.
CAS
PubMed
Google Scholar
Lim PO, Kim HJ, Nam HG. Leaf senescence. Annu Rev Plant Biol. 2007;58:115–36.
Article
CAS
PubMed
Google Scholar
Gan S, Amasino RM. Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol. 1997;113(2):313–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Zhou C. Signal transduction in leaf senescence. Plant Mol Biol. 2013;82(6):539–45.
Article
CAS
PubMed
Google Scholar
Yolcu S, Li X, Li S, Kim YJ. Beyond the genetic code in leaf senescence. J Exp Bot. 2018;69(4):801–10.
Article
CAS
PubMed
Google Scholar
Liu X, Li Z, Jiang Z, Zhao Y, Peng J, Jin J, Guo H, Luo J. LSD: a leaf senescence database. Nucleic Acids Res. 2011;39(Database issue):D1103–1107.
Li Z, Peng J, Wen X, Guo H. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol. 2012;54(8):526–39.
Article
CAS
PubMed
Google Scholar
Yang SD, Seo PJ, Yoon HK, Park CM. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell. 2011;23(6):2155–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vainonen JP, Jaspers P, Wrzaczek M, Lamminmaki A, Reddy RA, Vaahtera L, Brosche M, Kangasjarvi J. RCD1-DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana. Biochem J. 2012;442(3):573–81.
Article
CAS
PubMed
Google Scholar
Liebsch D, Keech O: Dark-induced leaf senescence. new insights into a complex light-dependent regulatory pathway. New Phytol. 2016;212(3):563–570.
Schippers JH, Schmidt R, Wagstaff C, Jing HC. Living to die and dying to live: The survival strategy behind leaf senescence. Plant Physiol. 2015;169(2):914–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ueda H, Kusaba M. Strigolactone regulates leaf Senescence in concert with ethylene in Arabidopsis. Plant Physiol. 2015;169(1):138–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Park SJ, Lee IH, Chu H, Penfold CA, Kim JH, Buchanan-Wollaston V, Nam HG, Woo HR, Lim PO. Comparative transcriptome analysis in Arabidopsis ein2/ore3 and ahk3/ore12 mutants during dark-induced leaf senescence. J Exp Bot. 2018;69(12):3023–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bleecker AB, Estelle MA, Somerville C, Kende H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science. 1988;241(4869):1086–9.
Article
CAS
PubMed
Google Scholar
van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R. Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol. 2006;141(2):776–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang NN, Yang SF, Charng Y. Differential expression of 1-aminocyclopropane-1-carboxylate synthase genes during orchid flower senescence induced by the protein phosphatase inhibitor okadaic acid. Plant Physiol. 2001;126(1):253–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Peng J, Wen X, Guo H. Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell. 2013;25(9):3311–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J. 1997;12(3):527–35.
Article
CAS
PubMed
Google Scholar
Grbić V, Bleecker AB. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 1995;8(4):595–602.
Article
Google Scholar
Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science. 2009;323(5917):1053–7.
Article
CAS
PubMed
Google Scholar
Qiu K, Li Z, Yang Z, Chen J, Wu S, Zhu X, Gao S, Gao J, Ren G, Kuai B, et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet. 2015;11(7): e1005399.
Article
PubMed
PubMed Central
CAS
Google Scholar
Woo HR, Kim HJ, Lim PO, Nam HG. Leaf senescence: systems and dynamics aspects. Annu Rev Plant Biol. 2019;70:347–76.
Article
CAS
PubMed
Google Scholar
Zhao J, Favero DS, Peng H, Neff MM. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. P Natl Acad Sci USA. 2013;110(48):E4688-4697.
Article
CAS
Google Scholar
Xiao C, Chen F, Yu X, Lin C, Fu YF. Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Mol Biol. 2009;71(1–2):39–50.
Article
CAS
PubMed
Google Scholar
Zhao J, Favero DS, Qiu J, Roalson EH, Neff MM. Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants. BMC Plant Biol. 2014;14:266.
Article
PubMed
PubMed Central
Google Scholar
Fujimoto S, Matsunaga S, Yonemura M, Uchiyama S, Azuma T, Fukui K. Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces. Plant Mol Biol. 2004;56(2):225–39.
Article
CAS
PubMed
Google Scholar
Matsushita A, Furumoto T, Ishida S, Takahashi Y. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiol. 2007;143(3):1152–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim PO, Kim Y, Breeze E, Koo JC, Woo HR, Ryu JS, Park DH, Beynon J, Tabrett A, Buchanan-Wollaston V, et al. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J. 2007;52(6):1140–53.
Article
CAS
PubMed
Google Scholar
Lu H, Zou Y, Feng N. Overexpression of AHL20 negatively regulates defenses in Arabidopsis. J Integr Plant Biol. 2010;52(9):801–8.
Article
CAS
PubMed
Google Scholar
Yun J, Kim YS, Jung JH, Seo PJ, Park CM. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying flowering locus t chromatin in Arabidopsis. J Biol Chem. 2012;287(19):15307–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vom Endt D, Soares e Silva M, Kijne JW, Pasquali G, Memelink J. Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins. Plant Physiol. 2007;144(3):1680–1689.
Rashotte AM, Carson SD, To JP, Kieber JJ. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003;132(4):1998–2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Street IH, Shah PK, Smith AM, Avery N, Neff MM. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis. Plant J. 2008;54(1):1–14.
Article
CAS
PubMed
Google Scholar
Favero DS, Kawamura A, Shibata M, Takebayashi A, Jung JH, Suzuki T, Jaeger KE, Ishida T, Iwase A, Wigge PA, et al. AT-Hook transcription factors restrict petiole growth by antagonizing PIFs. Curr Biol. 2020;30(8):1454–1466 e1456.
Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 2006;46(4):601–12.
Article
CAS
PubMed
Google Scholar
Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. P Natl Acad Sci USA. 2006;103(3):814–9.
Article
CAS
Google Scholar
Guo S, Dai S, Singh PK, Wang H, Wang Y, Tan JLH, Wee W, Ito T. A membrane-bound NAC-like transcription factor OsNTL5 Represses the Flowering in Oryza sativa. Front Plant Sci. 2018;9:555.
Article
PubMed
PubMed Central
Google Scholar
Ju C, Chang C. Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane. AoB Plants. 2012;2012:pls031.
Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. P Natl Acad Sci USA. 2012;109(47):19486–91.
Article
CAS
Google Scholar
Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, Ecker JR. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science. 2012;338(6105):390–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 2012;22(11):1613–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu A, Zhang W, Wen CK. Enhancing ctr1-10 ethylene response2 is a novel allele involved in constitutive triple-response1-mediated ethylene receptor signaling in Arabidopsis. BMC Plant Biol. 2014;14:48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu H, Guo S, Lu M, Zhang Y, Li J, Wang W, Wang P, Zhang J, Hu Z, Li L, et al. Biosynthesis of DHGA12 and its roles in Arabidopsis seedling establishment. Nat Commun. 2019;10(1):1768.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 2006;1(2):641–6.
Article
CAS
PubMed
Google Scholar
Yan L, Wei S, Wu Y, Hu R, Li H, Yang W, Xie Q. High efficiency genome editing in Arabidopsis using Yao promoter-driven crispr/Cas9 system. Mol Plant. 2015;8(12):1820–3.
Article
CAS
PubMed
Google Scholar
Li J, Liu J, Wang G, Cha JY, Li G, Chen S, Li Z, Guo J, Zhang C, Yang Y, et al. A chaperone function of no catalase activity1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell. 2015;27(3):908–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2(7):1565–72.
Article
CAS
PubMed
Google Scholar
Kim D, Langmead B, Salzberg SL. hisat: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar