Owen NL, Hundley N. Endophytes-the chemical synthesizers inside plants. Sci Prog. 2004;87:79–99.
Article
CAS
PubMed
Google Scholar
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278:1–9.
Article
CAS
PubMed
Google Scholar
Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol. 2015;35:62–74.
Article
CAS
PubMed
Google Scholar
Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. Curr Opin Plant Biol. 2011;14:435–43.
Article
PubMed
Google Scholar
Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A. Metabolic potential of endophytic bacteria. Curr Opin Biotechnol. 2014;27:30–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeda S, Okubo T, Kaneko T, Inaba S, Maekawa T, Eda S, et al. Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels. ISME J. 2010;4:315–26.
Article
CAS
PubMed
Google Scholar
Carvalho TL, Balsemão-Pires E, Saraiva RM, Ferreira PC, Hemerly AS. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot. 2014;65:5631–42.
Article
CAS
PubMed
Google Scholar
Montañez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M. Characterisation of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol. 2012;58:21–8.
Article
Google Scholar
Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M. Molecular characterisation and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L). World J Microbiol Biotechnol. 2014;30:719–25.
Article
CAS
PubMed
Google Scholar
Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. Isolation and characterisation of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004;6:1244–51.
Article
CAS
PubMed
Google Scholar
Grube M, Cardinale M, Jr de Castro JV, Müller H, Berg G. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J. 2009;3:1105–15.
Article
PubMed
Google Scholar
El-Deeb B, Fayez K, Gherbawy Y. Isolation and characterisation of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact. 2013;8:56–64.
Article
CAS
Google Scholar
Chen T, Chen Z, Ma GH, Du BH, Shen B, Ding YQ, et al. Diversity and potential application of endophytic bacteria in ginger. Genet Mol Res. 2014;13:4918–31.
Article
CAS
PubMed
Google Scholar
Francis I, Holsters M, Vereecke D. The Gram-positive side of plant-microbe interactions. Environ Microbiol. 2010;12:1–12.
Article
CAS
PubMed
Google Scholar
Mei C, Flinn BS. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol. 2010;4:81–95.
Article
CAS
PubMed
Google Scholar
Larran S, Perelló A, Simón MR, Moreno V. Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J Microbiol Biotechnol. 2002;18:683–6.
Article
CAS
Google Scholar
Li CH, Shi L, Han Q, Hu HL, Zhao MW, Tang CM, et al. Biocontrol of verticillium wilt and colonisation of cotton plants by an endophytic bacterial isolate. J Appl Microbiol. 2012;113:641–51.
Article
PubMed
Google Scholar
Duan YQ, He ST, Li QQ, Wang MF, Wang WY, Zhe W, et al. Lysinibacillus tabacifolii sp. nov a novel endophytic bacterium isolated from Nicotiana tabacum leaves. J Microbiol. 2013;51(3):289–94.
Article
CAS
PubMed
Google Scholar
Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agr Sci. 2013;58:195–201.
Article
Google Scholar
Shi Y, Yang H, Zhang T, Sun J, Lou K. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol. 2014;98:6375–85.
Article
CAS
PubMed
Google Scholar
Zhang X, Gao JS, Cao YH, Sheirdil RA, Wang XC, Zhang L. Isolation and proposal novel rice promoting endophytic bacteria, Rhizobium oryzicola sp. nov. Int J Syst Evol Microbiol. 2015;65:2931–6.
Article
CAS
PubMed
Google Scholar
Gond SK, Bergen MS, Torres MS, Jr White JF. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res. 2015;172:79–87.
Article
CAS
PubMed
Google Scholar
Compant S, Mitter B, Colli JG, Gangl H, Sessitsch A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualisation of niches of colonisation. Microb Ecol. 2011;62:188–97.
Article
PubMed
Google Scholar
Jin H, Yang XY, Yan ZQ, Liu Q, Li XZ, Chen JX, et al. Characterisation of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. System Appl Microbiol. 2014;37:376–85.
Article
Google Scholar
Liu Y, Li YH, Yao S, Wang H, Cao YH, Li J, et al. Diversity and distribution of endophytic bacterial community in the Noni (Morinda citrifolia L.) plant. African J Microbiol Res. 2015;9:1649–57.
Article
CAS
Google Scholar
Liu B, Qiao H, Huang L, Buchenauera H, Han Q, Kang Z, et al. Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control. 2009;49:277–85.
Article
Google Scholar
Yang MM, Mavrodi DV, Mavrodi OV, Bonsall RF, Parejko JA, Paulitz TC, et al. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Phytopathology. 2011;101:1481–91.
Article
PubMed
Google Scholar
Kildea S, Ransbotyn V, Khan MR, Fagan B, Leonard G, Mullins E, et al. Bacillus megaterium shows potential for the biocontrol of Septoria tritici blotch of wheat. Biol Control. 2008;47:37-45SSS.
Article
Google Scholar
Tao A, Pang FH, Huang S, Yu G, Li B, Wang T. Characterisation of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Sci Techn. 2014;24:901–24.
Article
Google Scholar
Pang FH, Tan Wang, Chenchen Zhao, Aili Tao, Ziwei Yu, Huang S, et al. Novel bacterial endophytes isolated from winter wheat plants as biocontrol agent against stripe rust of wheat. BioControl. 2016;61:207–19.
Article
CAS
Google Scholar
Coombs JT, Franco CMM. Isolation and identification of actinobacteria from surface-sterilised wheat roots. Appl Environ Microbiol. 2003;69:5603–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conn VM, Franco CMM. Analysis of the endophytic actinobacterial population in the roots of wheat Triticum aestivu L. by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol. 2004;70:1787–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diaz Herrera S, Grossi C, Zawoznik M, Groppa MD. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res. 2016;186–187:37–43.
Article
PubMed
CAS
Google Scholar
Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil. 2016;405:381–96.
Article
CAS
Google Scholar
Gdanetz K, Trail F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes. 2017;1:158–68.
Article
Google Scholar
Makar O, Kuźniar A, Patsula O, Kavulych Y, Kozlovskyy V, Wolińska A, Skórzyńska-Polit E, Vatamaniuk O, Terek O, Romanyuk N. Bacterial endophytes of spring wheat grains and the potential to acquire Fe, Cu, and Zn under their low soil bioavailability. Biology (Basel). 2021;10:409.
CAS
Google Scholar
Sessitsch A, Reiter B, Pfeifer U, Wilhelm E. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol. 2002;39:23–32.
Article
CAS
PubMed
Google Scholar
Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, et al. Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis – One species on the basis of genetic evidence. Appl Environ Mibrobiol. 2000;66:2627–30.
Article
CAS
Google Scholar
Ma Y, Tan X, Huang S, Zhang X, Zang L, Niu X. Identification of a biocontrol strain Z2 against pomegranate dry rot and optimisation of its cultural conditions. Acta Phytopathol Sin. 2015;45:425–37 (In Chinese with English abstract).
Google Scholar
Watanabe K, Nelson J, Harayama S, Kasai H. ICB database: the gyrB database for identification and classification of bacteria. Nucleic Acids Res. 2001;29:344–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G. Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Gen Mol Res. 2010;9:2372–80.
Article
CAS
Google Scholar
He H, Cai X, Hong Y, Guan X, Hu F. Selection of endophytic antifungal bacteria from capsicum. Chinese J Biol Control. 2002;18:171–5 (In Chinese with English abstract).
CAS
Google Scholar
Ma G, Xiao CG. Population dynamics of endophytic bacteria in symptom-free tobacco plants. J Microbiol. 2004;24:7–12 (In Chinese with English abstract).
Google Scholar
Elvira-Recuenco M, Van Vuurde JWL. Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol. 2000;46:1036–41.
Article
CAS
PubMed
Google Scholar
Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JWL, Azevedo JL. Diversity of endophytic bacterial populations and their interactions with Xylella fastidiosa in Citrus plants. Appl Environ Microbiol. 2002;68:4906–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Souza SA, Xavier AA, Costa MR, Cardoso AMS, Pereira MCT, Nietsche S. Endophytic bacterial diversity in banana “Prata Anã” (Musa spp. Roots). Genet Mol Biol. 2013;36:252–64.
Romero FM, Marina M, Pieckenstain Lett FL. The communities of tomato (Solanum lycopersicum L). leaf endophytic bacteria, analysed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol. 2014;351:187–94.
Article
CAS
Google Scholar
Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183:92–9.
Article
CAS
PubMed
Google Scholar
Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep. 2015;7:40–50.
Article
Google Scholar
Hill NS, Bouton JH, Hiatt EE, Kittle B. Seed maturity, germination, and endophyte relationships in tall fescue. Crop Sci. 2005;45:859–63.
Article
Google Scholar
Cankar K, Kraigher H, Ravnikar M, Rupnik M. Bacterial endophytes from seeds of Norway spruce (Picea abies L Karst). FEMS Microbiol Lett. 2005;244:341–5.
Article
CAS
PubMed
Google Scholar
Hill NS, Roach PK. Endophyte survival during seed storage: endophyte–host interactions and heritability. Crop Sci. 2009;49:1425–30.
Article
Google Scholar
van Overbeek L, van Elsas JD. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol. 2008;64:283–96.
Article
CAS
PubMed
Google Scholar
Marag PS, Suman A, Gond S. Prospecting endophytic bacterial colonisation and their potential plant growth promoting attributes in hybrid maize (Zea mays L.). Int J Curr Microbiol App Sci. 2018;7:1292–304.
Article
CAS
Google Scholar
Yu X, Yang J, Wang E, Li B, Yuan H. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves. Front Microbiol. 2015;6:867.
PubMed
PubMed Central
Google Scholar
Redford AJ, Fierer N. Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microb Ecol. 2009;58:189–98.
Article
PubMed
Google Scholar
Kerstiens G. Water transport in plant cuticles: an update. J Exp Bot. 2006;57:2493–9.
Article
CAS
PubMed
Google Scholar
Jiang GB. Screening and characterisation of a phosphate-solubilising endophyte from wheat and primary study on characteristic of P-solubilizing. Master Dissertation, Sichuan Normal University; 2012. (In Chinese with English abstract).
Garbeva P, Overbeek LS, Vuurde JWL, Elsas JD. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol. 2001;41:369–83.
Article
CAS
PubMed
Google Scholar
Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Rev Microbiol. 2009;7:514–25.
Article
CAS
Google Scholar
Hong CE, Jo SH, Jo I-H, Park PM. Diversity and antifungal activity of endophytic bacteria associated with Panax ginseng seedlings. Plant Biotech Rep. 2018;12:409–148.
Article
Google Scholar
Kuklinsky-Sobral J, Araújo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL. Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil. 2005;273:91–9.
Article
CAS
Google Scholar
Kumawat KC, Sharma P, Singh I, Sirari A, Gill BS. Co-existence of Leclercia adecarboxylata(LSE-1) and Bradyrhizobium sp. (LSBR-3) in nodule niche for multifaceted effects and profitability in soybean production. World J Microbiol Biotechnolsss. 2019;35(11):172.
Article
CAS
Google Scholar
Shi YW, Lou K, Li C. Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils. 2009;45:645–53.
Article
CAS
Google Scholar
Jiang X, Gao J, Xu F, Cao Y, Tang X, Zhang X. Diversity of endophytic bacteria in rice seeds and their secretion of indole acetic acid. Acta Microbiol Sin. 2013;53:269–75.
CAS
Google Scholar
Faria DC, Dias ACF, Melo IS, Carvolho Costa FE. Endophytic bacteria isolated from orchid and their potential to promote plant growth. World J Microbiol Biotechnol. 2013;29:217–21.
Article
PubMed
Google Scholar
Ali B, Sabri AN, Ljung K, Hasnain S. Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World J Microbiol Biotechnol. 2008;25:519–26.
Article
CAS
Google Scholar
Egorshina AA, Khairullin RM, Sakhabutdinova AR, Lukyantsev MA. Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11BM. Russ J Plant Physiol. 2012;59:134–40.
Article
CAS
Google Scholar
Shekar NC. An efficient microbiological growth medium for screening phosphate solubilising microorganisms. FEMS Microbiol Lett. 1999;170:265–70.
Article
Google Scholar
Bashan Y, Kamnev AA, de-Bashan LE. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilising bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils. 2013;49:465–79.
Article
CAS
Google Scholar
Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21:541–54.
Article
CAS
PubMed
Google Scholar
Izquierdo JA, Nüsslein K. Distribution of extensive nifH gene diversity across physical soil microenvironments. Microbiol Ecol. 2006;51:441–52.
Article
Google Scholar
Pang FH, Du RQ, Wang T, Huang SL. Screening of wheat growth-promoting endophytic bacteria and correlation analysis of factors influencing wheat growth. J China Agric Univ. 2016;21:8–21 (In Chinese with English abstract).
Google Scholar
Gong ZT. China soil systemic classification-theory, methodology and practice. Beijing: China Science Press; 1999. (In Chinese).
Google Scholar
Ahmed M, Hussain M, Dhar MK, Kaul S. Isolation of microbial endophytes from some ethnomedicinal plants of Jammu and Kashmir. J Nat Prod Plant Resour. 2012;2:215–20.
Google Scholar
Bibi F, Yasi RM, Song GC, Lee SY, Chung YR. Diversity and characterisation of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. Plant Pathol J. 2012;28:20–31.
Article
CAS
Google Scholar
Fu G, Huang S, Ye Y, Wu Y, Cen Z, Lin S. Characterisation of a bacterial biocontrol strain B106 and its efficacy in controlling banana leaf spot and post-harvest anthracnose diseases. Biol Control. 2010;55:1–10.
Article
Google Scholar
Glickmann E, Dessaux Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol. 1995;619:60–2.
Google Scholar
Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26:192–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar V, Narula N. Solubilisation of inorganic phosphates and growth emergence of wheat as affected by Azotobacter choroococcum mutants. Biol Fertil Soil. 1999;28:301–5.
Article
CAS
Google Scholar
Son HJ, Park GT, Cha MS, Heo MS. Solubilisation of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technol. 2006;97:204–10.
Article
CAS
Google Scholar
Wang ZC. Study on the screening and culturing for phosphobacteria and silicate bacteria. J Changsha Univ Electric Pow (Nat Sci). 2002;17:76–8 (In Chinese with English abstract).
CAS
Google Scholar
Huang S, Long M, Fu G, Lin S, Qin L, Hu C, et al. Characterisation of a new pathovar of Agrobacterium vitis causing banana leaf blight in China. J Basic Microbiol. 2015;53:129–34.
Article
CAS
Google Scholar
Bao SD. Soil agricultural chemistry analysis. Beijing: China Agriculture Press; 2010. (In Chinese).
Google Scholar
Zhou HZ. Status and evaluation of nutrients in the farm lands of the consolidated districts in Nanyang city. Agric Henan. 2016;11:20–1 (In Chinese).
Google Scholar