Shewry PR. Wheat. J Exp Bot. 2009;60(6):1537–53.
Article
CAS
PubMed
Google Scholar
Bushuk W. Wheat breeding for end-product use. Euphytica. 1998;100(3):137–45.
Article
Google Scholar
Garvin DF, Welch RM, Finley JW. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric. 2010;86(13):2213–20.
Article
CAS
Google Scholar
Brini M, Ottolini D, Cali T, Carafoli E. Calcium in health and disease. Met Ions Life Sci. 2013;13:81–137.
Article
PubMed
Google Scholar
Pravina P, Sayaji D, Avinash M. Calcium and its role in human body; 2012.
Google Scholar
Gao X, LaValley MP, Tucker KL. Prospective studies of dairy product and calcium intakes and prostate cancer risk: a meta-analysis. J Natl Cancer Inst. 2005;97(23):1768–77.
Article
CAS
PubMed
Google Scholar
Lin J, Manson JE, Lee IM, Cook NR, Buring JE, Zhang SM. Intakes of calcium and vitamin D and breast cancer risk in women. Arch Intern Med. 2007;167(10):1050–9.
Article
CAS
PubMed
Google Scholar
White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM. Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta. 2002;1564(2):299–309.
Article
CAS
PubMed
Google Scholar
Dodd AN, Kudla J, Sanders D. The language of calcium signaling. Annu Rev Plant Biol. 2010;61:593–620.
Article
CAS
PubMed
Google Scholar
Allen GJ, Schroeder JI. Combining genetics and cell biology to crack the code of plant cell calcium signaling. Sci STKE. 2001;102(2001):re13.
Google Scholar
Knight H. Calcium signaling during abiotic stress in plants. Int Rev Cytol. 2000;195:269–324.
Article
CAS
PubMed
Google Scholar
Cheng SH. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 2002;129(2):469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frossard E, Bucher M, Machler F, Mozafar A, Hurrell R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric. 2000;80(7):861–79.
Article
CAS
Google Scholar
Singh UM, Metwal M, Singh M, Taj G, Kumar A. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content. Gene. 2015;566(1):37–46.
Article
CAS
PubMed
Google Scholar
Sze H, Liang F, Hwang I, Curran AC, Harper JF. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:433–62.
Article
CAS
PubMed
Google Scholar
Sharma D, Jamra G, Singh UM, Sood S, Kumar A. Calcium biofortification: three pronged molecular approaches for dissecting complex trait of calcium nutrition in finger millet (Eleusine coracana) for devising strategies of enrichment of food crops. Front Plant Sci. 2016;7:2028.
PubMed
Google Scholar
Toshifumi N, Shigemi I, Kouji S, Hisako O, Jun K, Piero C, et al. Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. Molbiolevol. 2004;21(10):1855–70.
Google Scholar
Axelsen KB, Palmgren MG. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol. 2001;126(2):696–706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol. 2003;132(2):618–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pittman JK. Vacuolar Ca uptake. Cell Calcium. 2011;50(2):139–46.
Article
CAS
PubMed
Google Scholar
Goel A, Gaur VS, Arora S, Gupta S, Kumar A. In silico analysis of expression data for identification of genes involved in spatial accumulation of calcium in developing seeds of rice. Omics. 2012;16(7–8):402–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirschi K. Vacuolar H+/Ca2+ transport: who's directing the traffic? Trends Plant Sci. 2001;6(3):100–4.
Article
CAS
PubMed
Google Scholar
Goel A, Taj G, Pandey D, Gupta S, Kumar A. Genome-wide comparative in silico analysis of calcium transporters of rice and sorghum. Genomics Proteomics Bioinformatics. 2011;9(4–5):138–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, et al. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat x wild emmer wheat RIL population. Theor Appl Genet. 2009;119(2):353–69.
Article
CAS
PubMed
Google Scholar
Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci. 2014;59(3):365–72.
Article
CAS
Google Scholar
Fedorowicz-Stronska O, Koczyk G, Kaczmarek M, Krajewski P, Sadowski J. Genome-wide identification, characterization and expression profiles of calcium-dependent protein kinase genes in barley (Hordeum vulgare L.). J Appl Genet. 2017;58(1):11–22.
Article
CAS
PubMed
Google Scholar
Vreugdenhil D, Aarts GM, Koornneef M, Nelissen H, Ernst WHO. Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ. 2010;27(7):828–39.
Article
Google Scholar
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alomari DZ, Eggert K, von Wiren N, Pillen K, Roder MS. Genome-wide association study of calcium accumulation in grains of european wheat cultivars. Front Plant Sci. 2017;8:1797.
Article
PubMed
PubMed Central
Google Scholar
Bhatta M, Baenziger PS, Waters BM, Poudel R, Belamkar V, Poland J, et al. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int J Mol Sci. 2018;10(19):3237.
Bálint AF, Röder MS, Hell R, Galiba G, Börner A. Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biol Plant. 2007;51(1):129–34.
Article
Google Scholar
Crespo-Herrera LA, Govindan V, Stangoulis J, Hao Y, Singh RP. QTL mapping of grain Zn and Fe concentrations in two hexaploid wheat RIL populations with ample transgressive segregation. Front Plant Sci. 2017;8:1800.
Article
PubMed
PubMed Central
Google Scholar
Ganeva G, Landjeva S, Merakchijska M. Effects of chromosome substitutions on copper toxicity tolerance in wheat seedlings. Biol Plant. 2003;47(4):621–3.
Article
CAS
Google Scholar
Xu YF, An DG, Li HJ, Xu HX. Breeding wheat for enhanced micronutrients. Canadian J. of Plant Science. 2011;91(2):231-237.
Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, et al. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet. 2016;129(6):1203–15.
Article
CAS
PubMed
Google Scholar
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, et al. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J. 2014;12(6):787–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, et al. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J. 2016;14(5):1195–206.
Article
CAS
PubMed
Google Scholar
Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, et al. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol J. 2017;15(3):390–401.
Article
CAS
PubMed
Google Scholar
Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J. 2020;18(6):1354–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long AD, Langley CH. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 1999;9(8):720–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu C, Gore M, Buckler ES, Yu J. Status and Prospects of Association Mapping in Plants. Plant Genome. 2008;1(1):5–20.
Article
CAS
Google Scholar
Cormier F, Gouis JL, Dubreuil P, Lafarge S, Praud S. A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet. 2014;127(12):2679–93.
Article
CAS
PubMed
Google Scholar
Yang X, Pan Y, Singh PK, He X, Ren Y, Zhao L, et al. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC Plant Biol. 2019;19(1):153.
Hitz K, Clark AJ, Sanford D. Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments. Field Crop Res. 2017;200:1–9.
Article
Google Scholar
Flint-Garcia SA. Genetics and consequences of crop domestication. J Agric Food Chem. 2013;61(35):8267–76.
Article
CAS
PubMed
Google Scholar
Shi RL, Tong YP, Jing RL, Zhang FS, Zou CQ. Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). Journal of Integrative. Agriculture. 2013;12(9):1512–21.
Google Scholar
Shen X, Yuan Y, Zhang H, Guo Y, Zhao Y, Li S, et al. The hot QTL locations for potassium, calcium, and magnesium nutrition and agronomic traits at seedling and maturity stages of wheat under different potassium treatments. Genes. 2019;10(8):607.
Article
CAS
PubMed Central
Google Scholar
Mackay TF, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 2009;10(8):565–77.
Article
CAS
PubMed
Google Scholar
Genc Y, Taylor J, Rongala J, Oldach K. A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS One. 2014;9(6):e98845.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bickel-Sandkötter S, Wagner V, Schumann D. ATP-synthesis in archaea: Structure-function relations of the halobacterial A-ATPase. Photosynth Res. 1998;57(3):335–45.
Article
Google Scholar
Samuelson JC, Azikiwe N, Shen PS. Proton-transporting and calcium ion-transporting ATPases of entamoeba histolytica. Parasitol Today. 1995;11(11):417–20.
Article
CAS
Google Scholar
Hofmann SL, Brown MS, Lee E, Pathak RK, Goldstein JL. Purification of a sarcoplasmic reticulum protein that binds Ca2+ and plasma lipoproteins. J Biol Chem. 1989;264(14):8260–70.
Article
CAS
PubMed
Google Scholar
Hofmann SL, Topham M, Hsieh C, Francke U. cDNA and genomic cloning of HRC, a human sarcoplasmic reticulum protein, and localization of the gene to human chromosome 19 and mouse chromosome 7. Genomics. 1991;9(4):656–69.
Article
CAS
PubMed
Google Scholar
Hong S, Kim TW, Choi I, Woo JM, Oh J, Park WJ, et al. Complementary DNA cloning, genomic characterization and expression analysis of a mammalian gene encoding histidine-rich calcium binding protein. BBA - Gene Struct Expres. 2005;1727(3):188–96.
Article
CAS
Google Scholar
Ridgeway AG, Petropoulos H, Siu A, Ball JK, Skerjanc IS. Cloning, tissue distribution, subcellular localization and overexpression of murine histidine-rich Ca2+ binding protein. FEBS Lett. 1999;456(3):399–402.
Article
CAS
PubMed
Google Scholar
Arvanitis DA, Vafiadaki E, Sanoudou D, Kranias EG. Histidine-rich calcium binding protein: The new regulator of sarcoplasmic reticulum calcium cycling. J Mol Cell Cardiol. 2011;50(1):43–9.
Article
CAS
PubMed
Google Scholar
Yang J, Zhang T, Mao H, Jin H, Qi Z. A leymus chinensis histidine-rich Ca2+-binding protein binds Ca2+/Zn2+ and suppresses abscisic acid signaling in Arabidopsis. J Plant Physiol. 2020;252:153209.
Article
CAS
PubMed
Google Scholar
Audrey K, Nuno L, Mireille C, Myriam C, Fernanda C. Dual color sensors for simultaneous analysis of calcium signal dynamics in the nuclear and cytoplasmic compartments of plant cells. Front Plant Sci. 2018;9:245.
Article
Google Scholar
Liu K, Lyu L, Chin D, Gao J, Sun X, Shang F, et al. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract. Proc Natl Acad Sci U S A. 2015;112(4):1071–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheema SA, Rehman HU, Kiran A, Bashir K, Wakeel A. Plant micronutrient use efficiency. 1st ed. Amsterdam: Elsevier; 2018. p. 261–78.
Google Scholar
Xu Y, An D, Liu D, Zhang A, Xu H, Li B. Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crop Res. 2012;138:57–62.
Article
Google Scholar
Borrill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci. 2014;5:53.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Zhang F, Zhao C, Lv G, Sun C, Pan Y, et al. Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnol J. 2019;17(11):2106–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyle JJ, Doyle JL. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemistry. 1986;19(1):11-15.
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28(18):2397–9.
Article
CAS
PubMed
Google Scholar
Vanraden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414–23.
Article
CAS
PubMed
Google Scholar
Zhou Z, Shi X, Zhao G, Qin M, Wang J, Maria II, et al. Identification of novel genomic regions and superior alleles associated with Zn accumulation in wheat using a genome-wide association analysis method. Int J Mol Sci. 2020;21(6):1928.
Article
CAS
PubMed Central
Google Scholar