Chiang Y-H, Coaker G. Effector triggered immunity: NLR immune perception and downstream defense responses. The Arabidopsis Book 2015; 2015.
Google Scholar
Li W, Deng Y, Ning Y, He Z, Wang G-L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu Rev Plant Biol. 2020;71:575–603.
Article
CAS
PubMed
Google Scholar
Wilkinson SW, Magerøy MH, López Sánchez A, Smith LM, Furci L, Cotton TA, et al. Surviving in a hostile world: plant strategies to resist pests and diseases. Annu Rev Phytopathol. 2019;57:505–29.
Article
CAS
PubMed
Google Scholar
Voesenek LA, Sasidharan R, Visser EJ, Bailey-Serres J. Flooding stress signaling through perturbations in oxygen, ethylene, nitric oxide and light. New Phytol. 2016;209(1):39–43.
Article
PubMed
Google Scholar
Lamers J, van der Meer T, Testerink C. How plants sense and respond to stressful environments. Plant Physiol. 2020;182(4):1624–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peck S, Mittler R. Plant signaling in biotic and abiotic stress. J Exp Bot. 2020;71(5):1649–51.
Article
CAS
PubMed
Google Scholar
Yamada M, Han X, Benfey PN. RGF1 controls root meristem size through ROS signalling. Nature. 2020;577(7788):85–8.
Article
CAS
PubMed
Google Scholar
Waszczak C, Carmody M, Kangasjarvi J. Reactive oxygen species in plant signaling. Annu Rev Plant Biol. 2018;69:209–36.
Article
CAS
PubMed
Google Scholar
Willems P, Mhamdi A, Stael S, Storme V, Kerchev P, Noctor G, et al. The ROS wheel: refining ROS transcriptional footprints. Plant Physiol. 2016;171(3):1720–33.
Article
PubMed
PubMed Central
Google Scholar
Rosenwasser S, Fluhr R, Joshi JR, Leviatan N, Sela N, Hetzroni A, et al. ROSMETER: a bioinformatic tool for the identification of transcriptomic imprints related to reactive oxygen species type and origin provides new insights into stress responses. Plant Physiol. 2013;163(2):1071–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Marcos M, Desvoyes B, Manzano C, Liberman LM, Benfey PN, Del Pozo JC, et al. Control of Arabidopsis lateral root primordium boundaries by MYB36. New Phytol. 2017;213(1):105–12.
Article
CAS
PubMed
Google Scholar
Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010;143(4):606–16.
Article
CAS
PubMed
Google Scholar
Noctor G, Reichheld JP, Foyer CH. ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol. 2018;80:3–12.
Article
CAS
PubMed
Google Scholar
Foyer CH, Noctor G. Stress-triggered redox signalling: what's in pROSpect? Plant Cell Environ. 2016;39(5):951–64.
Article
CAS
PubMed
Google Scholar
Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol. 1997;115(1):137–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, et al. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell. 2015;27(5):1445–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Liu J, Wang G, Cha JY, Li G, Chen S, et al. A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell. 2015;27(3):908–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kneeshaw S, Keyani R, Delorme-Hinoux V, Imrie L, Loake GJ, Le Bihan T, et al. Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes. Proc Natl Acad Sci U S A. 2017;114(31):8414–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan HM, Liu WC, Lu YT. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host Microbe. 2017;21(2):143–55.
Article
CAS
PubMed
Google Scholar
Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A. 2012;109(14):5535–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
D'Alessandro S, Ksas B, Havaux M. Decoding beta-Cyclocitral-mediated retrograde signaling reveals the role of a detoxification response in plant tolerance to Photooxidative stress. Plant Cell. 2018;30(10):2495–511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawford T, Lehotai N, Strand A. The role of retrograde signals during plant stress responses. J Exp Bot. 2018;69(11):2783–95.
Article
CAS
PubMed
Google Scholar
Leister D. Piecing the puzzle together: the central role of reactive oxygen species and redox hubs in chloroplast retrograde signaling. Antioxid Redox Signal. 2019;30(9):1206–19.
Article
CAS
PubMed
Google Scholar
Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ. Learning the languages of the chloroplast: retrograde signaling and beyond. Annu Rev Plant Biol. 2016;67:25–53.
Article
CAS
PubMed
Google Scholar
Meng X, Li L, De Clercq I, Narsai R, Xu Y, Hartmann A, et al. ANAC017 coordinates Organellar functions and stress responses by reprogramming retrograde signaling. Plant Physiol. 2019;180(1):634–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A, Willems P, et al. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Mol Plant. 2014;7(7):1075–93.
Article
CAS
PubMed
Google Scholar
Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A. 2017;114(35):9326–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zandalinas SI, Mittler R, Balfagon D, Arbona V, Gomez-Cadenas A. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 2018;162(1):2–12.
Article
CAS
PubMed
Google Scholar
Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218(1):1–14.
Article
CAS
PubMed
Google Scholar
Gilliham M, Able JA, Roy SJ. Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J. 2017;90(5):898–917.
Article
CAS
PubMed
Google Scholar
Messerer M, Lang D, Mayer KF. Analysis of stress resistance using next generation techniques. Agronomy. 2018;8(8):130.
Article
CAS
Google Scholar
Loudet O, Hasegawa PM. Abiotic stress, stress combinations and crop improvement potential. Plant J. 2017;90(5):837–8.
Article
CAS
PubMed
Google Scholar
Li PS, Yu TF, He GH, Chen M, Zhou YB, Chai SC, et al. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics. 2014;15:1009.
Article
PubMed
PubMed Central
Google Scholar
Sarkar T, Thankappan R, Mishra GP, Nawade BD. Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants. Physiol Mol Biol Plants. 2019;25(6):1323–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen J, Lv B, Luo L, He J, Mao C, Xi D, et al. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep. 2017;7:40641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visioni A, Al-Abdallat A, Elenien JA, Verma RPS, Gyawali S, Baum M. Genomics and molecular breeding for improving tolerance to abiotic stress in barley (Hordeum vulgare L.). Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol II: Springer; 2019. p. 49–68.
Book
Google Scholar
Wang L, Ye X, Liu H, Liu X, Wei C, Huang Y, et al. Both overexpression and suppression of an Oryza sativa NB-LRR-like gene OsLSR result in autoactivation of immune response and thiamine accumulation. Sci Rep. 2016;6:24079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N Y). 2013;6(1):4.
Article
Google Scholar
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403).
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544(7651):427–33.
Article
CAS
PubMed
Google Scholar
Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Valè G, et al. Next generation breeding. Plant Sci. 2016;242:3–13.
Article
CAS
PubMed
Google Scholar
Hoang NV, Park S, Park C, Suh H, Kim ST, Chae E, et al. Oxidative stress response and programmed cell death guided by NAC013 modulate pithiness in radish taproots. Plant J. 2021.
Liu S, Liu S, Wang M, Wei T, Meng C, Wang M, et al. A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell. 2014;26(1):164–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan B, Chen M, Li S. Isolation and identification of Ipomoea cairica (L.) sweet gene IcSRO1 encoding a SIMILAR TO RCD-ONE protein, which improves salt and drought tolerance in transgenic Arabidopsis. Int J Mol Sci. 2020;21(3).
You J, Zong W, Du H, Hu H, Xiong L. A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors. Plant Mol Biol. 2014;84(6):693–705.
Article
CAS
PubMed
Google Scholar
Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Jarvi S, et al. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. Elife. 2019;8.
Berkowitz O, De Clercq I, Van Breusegem F, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. Plant Cell Environ. 2016;39(5):1127–39.
Article
CAS
PubMed
Google Scholar
Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, et al. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol. 2005;58(2):193–212.
Article
CAS
PubMed
Google Scholar
Ng S, Giraud E, Duncan O, Law SR, Wang Y, Xu L, et al. Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses. J Biol Chem. 2013;288(5):3449–59.
Article
CAS
PubMed
Google Scholar
Berkowitz O, Xu Y, Liew LC, Wang Y, Zhu Y, Hurgobin B, et al. RNA-seq analysis of laser microdissected Arabidopsis thaliana leaf epidermis, mesophyll and vasculature defines tissue-specific transcriptional responses to multiple stress treatments. Plant J. 2021;107(3):938–55.
Article
CAS
PubMed
Google Scholar
Munns R, James RA, Lauchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot. 2006;57(5):1025–43.
Article
CAS
PubMed
Google Scholar
Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, et al. Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food security. 2011;3(2):141–78.
Article
Google Scholar
Sugliani M, Abdelkefi H, Ke H, Bouveret E, Robaglia C, Caffarri S, et al. An ancient bacterial signaling pathway regulates chloroplast function to influence growth and development in Arabidopsis. Plant Cell. 2016;28(3):661–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina-Rivera A, Defrance M, Sand O, Herrmann C, Castro-Mondragon JA, Delerce J, et al. RSAT 2015: regulatory sequence analysis tools. Nucleic Acids Res. 2015;43(W1):W50–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Usadel B, Nagel A, Steinhauser D, Gibon Y, Blasing OE, Redestig H, et al. PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics. 2006;7:535.
Article
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
Article
PubMed
PubMed Central
Google Scholar
Patel RV, Nahal HK, Breit R, Provart NJ. BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. Plant J. 2012;71(6):1038–50.
Article
CAS
PubMed
Google Scholar
Toufighi K, Brady SM, Austin R, Ly E, Provart NJ. The botany Array resource: e-Northerns, expression angling, and promoter analyses. Plant J. 2005;43(1):153–63.
Article
CAS
PubMed
Google Scholar
Fucile G, Di Biase D, Nahal H, La G, Khodabandeh S, Chen Y, et al. ePlant and the 3D data display initiative: integrative systems biology on the world wide web. PLoS One. 2011;6(1):e15237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants. 2015;1(4):15025.
Article
CAS
PubMed
Google Scholar
Horvath E, Bela K, Galle A, Riyazuddin R, Csomor G, Csenki D, et al. Compensation of mutation in Arabidopsis glutathione transferase (AtGSTU) genes under control or salt stress conditions. Int J Mol Sci. 2020;21(7).
Luhua S, Hegie A, Suzuki N, Shulaev E, Luo X, Cenariu D, et al. Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol Plant. 2013;148(3):322–33.
Article
CAS
PubMed
Google Scholar
Stroher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ. Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Mol Plant. 2009;2(2):357–67.
Article
PubMed
Google Scholar
Ma C, Burd S, Lers A. miR408 is involved in abiotic stress responses in Arabidopsis. Plant J. 2015;84(1):169–87.
Article
CAS
PubMed
Google Scholar
Wang Y, Cordewener JH, America AH, Shan W, Bouwmeester K, Govers F. Arabidopsis lectin receptor kinases LecRK-IX.1 and LecRK-IX.2 are functional analogs in regulating Phytophthora resistance and plant cell death. Mol Plant-Microbe Interact. 2015;28(9):1032–48.
Article
CAS
PubMed
Google Scholar
Khare D, Choi H, Huh SU, Bassin B, Kim J, Martinoia E, et al. Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proc Natl Acad Sci U S A. 2017;114(28):E5712–E20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shubchynskyy V, Boniecka J, Schweighofer A, Simulis J, Kvederaviciute K, Stumpe M, et al. Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to pseudomonas syringae. J Exp Bot. 2017;68(5):1169–83.
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Van Aken O, Thatcher L, De Clercq I, Duncan O, Law SR, et al. The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. Plant J. 2014;80(4):709–27.
Article
CAS
PubMed
Google Scholar
Maekawa S, Inada N, Yasuda S, Fukao Y, Fujiwara M, Sato T, et al. The carbon/nitrogen regulator ARABIDOPSIS TOXICOS EN LEVADURA31 controls papilla formation in response to powdery mildew fungi penetration by interacting with SYNTAXIN OF PLANTS121 in Arabidopsis. Plant Physiol. 2014;164(2):879–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maekawa S, Sato T, Asada Y, Yasuda S, Yoshida M, Chiba Y, et al. The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response. Plant Mol Biol. 2012;79(3):217–27.
Article
CAS
PubMed
Google Scholar
Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D. JAV1 controls jasmonate-regulated plant defense. Mol Cell. 2013;50(4):504–15.
Article
CAS
PubMed
Google Scholar
Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, et al. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell. 2005;17(11):2922–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, et al. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol. 2012;53(12):2090–100.
Article
CAS
PubMed
Google Scholar
Hazak O, Mamon E, Lavy M, Sternberg H, Behera S, Schmitz-Thom I, et al. A novel Ca2+−binding protein that can rapidly transduce auxin responses during root growth. PLoS Biol. 2019;17(7):e3000085.
Article
PubMed
PubMed Central
Google Scholar
Jing P, Zou J, Kong L, Hu S, Wang B, Yang J, et al. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice. Plant Sci. 2016;247:104–14.
Article
CAS
PubMed
Google Scholar
Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 2012;17(6):369–81.
Article
CAS
PubMed
Google Scholar
Mauch-Mani B, Flors V. The ATAF1 transcription factor: at the convergence point of ABA-dependent plant defense against biotic and abiotic stresses. Cell Res. 2009;19(12):1322–3.
Article
CAS
PubMed
Google Scholar
Liu Y, Sun J, Wu Y. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res. 2016;129(5):955–62.
Article
CAS
PubMed
Google Scholar
Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 2009;19(11):1279–90.
Article
CAS
PubMed
Google Scholar
Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol. 2008;67(1–2):169–81.
Article
CAS
PubMed
Google Scholar
Gao F, Xiong A, Peng R, Jin X, Xu J, Zhu B, et al. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tissue Organ Cult. 2010;100(3):255–62.
Article
CAS
Google Scholar
Chen YJ, Perera V, Christiansen MW, Holme IB, Gregersen PL, Grant MR, et al. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Mol Biol. 2013;83(6):577–90.
Article
CAS
PubMed
Google Scholar
Wang Y, Berkowitz O, Selinski J, Xu Y, Hartmann A, Whelan J. Stress responsive mitochondrial proteins in Arabidopsis thaliana. Free Radic Biol Med. 2018;122:28–39.
Article
PubMed
Google Scholar
De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell. 2013;25(9):3472–90.
Article
PubMed
PubMed Central
Google Scholar
Sakuraba Y, Kim D, Han SH, Kim SH, Piao W, Yanagisawa S, et al. Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in Rice. Plant Cell. 2020;32(3):630–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, De Clercq I, et al. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell. 2013;25(9):3450–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerchev PI, De Clercq I, Denecker J, Muhlenbock P, Kumpf R, Nguyen L, et al. Mitochondrial perturbation negatively affects auxin signaling. Mol Plant. 2014;7(7):1138–50.
Article
CAS
PubMed
Google Scholar
Rehman HM, Nawaz MA, Shah ZH, Ludwig-Muller J, Chung G, Ahmad MQ, et al. Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Sci Rep. 2018;8(1):1875.
Article
PubMed
PubMed Central
Google Scholar
Bot P, Mun BG, Imran QM, Hussain A, Lee SU, Loake G, et al. Differential expression of AtWAKL10 in response to nitric oxide suggests a putative role in biotic and abiotic stress responses. PeerJ. 2019;7:e7383.
Article
PubMed
PubMed Central
Google Scholar
Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C. The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One. 2010;5(1):e8904.
Article
PubMed
PubMed Central
Google Scholar
Hu Z, Vanderhaeghen R, Cools T, Wang Y, De Clercq I, Leroux O, et al. Mitochondrial defects confer tolerance against cellulose deficiency. Plant Cell. 2016;28(9):2276–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi N, Ogita N, Takahashi T, Taniguchi S, Tanaka M, Seki M, et al. A regulatory module controlling stress-induced cell cycle arrest in Arabidopsis. Elife. 2019;8.
Gladman NP, Marshall RS, Lee KH, Vierstra RD. The proteasome stress regulon is controlled by a pair of NAC transcription factors in Arabidopsis. Plant Cell. 2016;28(6):1279–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee S, Seo PJ, Lee HJ, Park CM. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J. 2012;70(5):831–44.
Article
CAS
PubMed
Google Scholar
Fu Y, Ma H, Chen S, Gu T, Gong J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J Exp Bot. 2018;69(3):579–88.
Article
CAS
PubMed
Google Scholar
Xu Y, Berkowitz O, Narsai R, De Clercq I, Hooi M, Bulone V, et al. Mitochondrial function modulates touch signalling in Arabidopsis thaliana. Plant J. 2019;97(4):623–45.
Article
CAS
PubMed
Google Scholar
Baggs E, Monroe JG, Thanki AS, O'Grady R, Schudoma C, Haerty W, et al. Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals co-evolved components of plant immunity and drought response. Plant Cell. 2020.
You J, Zong W, Li X, Ning J, Hu H, Li X, et al. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot. 2013;64(2):569–83.
Article
CAS
PubMed
Google Scholar
Sweetman C, Waterman CD, Rainbird BM, Smith PMC, Jenkins CD, Day DA, et al. AtNDB2 is the Main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress. Plant Physiol. 2019;181(2):774–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senkler J, Senkler M, Eubel H, Hildebrandt T, Lengwenus C, Schertl P, et al. The mitochondrial complexome of Arabidopsis thaliana. Plant J. 2017;89(6):1079–92.
Article
CAS
PubMed
Google Scholar
Laflamme B, Dillon MM, Martel A, Almeida RND, Desveaux D, Guttman DS. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science. 2020;367(6479):763–8.
Article
CAS
PubMed
Google Scholar
Lorang J, Kidarsa T, Bradford CS, Gilbert B, Curtis M, Tzeng SC, et al. Tricking the guard: exploiting plant defense for disease susceptibility. Science. 2012;338(6107):659–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Wang H, Shao H, Tang X. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci. 2016;7:67.
PubMed
PubMed Central
Google Scholar
Sato Y, Ando S, Takahashi H. Role of intron-mediated enhancement on accumulation of an Arabidopsis NB-LRR class R-protein that confers resistance to cucumber mosaic virus. PLoS One. 2014;9(6):e99041.
Article
PubMed
PubMed Central
Google Scholar
Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA, et al. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell. 2007;19(6):2039–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carviel JL, Al-Daoud F, Neumann M, Mohammad A, Provart NJ, Moeder W, et al. Forward and reverse genetics to identify genes involved in the age-related resistance response in Arabidopsis thaliana. Mol Plant Pathol. 2009;10(5):621–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M, et al. Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic Rice (Oryza sativa L.): impact on tolerance to abiotic stresses. Front Plant Sci 2018;9:786.
Ji Y, Li Q, Liu G, Selvaraj G, Zheng Z, Zou J, et al. Roles of cytosolic glutamine Synthetases in Arabidopsis development and stress responses. Plant Cell Physiol. 2019;60(3):657–71.
Article
CAS
PubMed
Google Scholar
Mao G, Seebeck T, Schrenker D, Yu O. CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. BMC Plant Biol. 2013;13:169.
Article
PubMed
PubMed Central
Google Scholar
Fu M, Kang HK, Son SH, Kim SK, Nam KH. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant Cell Physiol. 2014;55(11):1892–904.
Article
CAS
PubMed
Google Scholar
Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, et al. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol. 2016;90(1–2):49–62.
Article
CAS
PubMed
Google Scholar
Liu X, Wu D, Shan T, Xu S, Qin R, Li H, et al. The trihelix transcription factor OsGTgamma-2 is involved adaption to salt stress in rice. Plant Mol Biol. 2020;103(4–5):545–60.
Article
CAS
PubMed
Google Scholar
Sun YG, Wang B, Jin SH, Qu XX, Li YJ, Hou BK. Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS One. 2013;8(3):e59924.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou R, Jackson L, Shadle G, Nakashima J, Temple S, Chen F, et al. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc Natl Acad Sci U S A. 2010;107(41):17803–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45(D1):D1040–D5.
Article
CAS
PubMed
Google Scholar
Ebrahimian-Motlagh S, Ribone PA, Thirumalaikumar VP, Allu AD, Chan RL, Mueller-Roeber B, et al. JUNGBRUNNEN1 confers drought tolerance downstream of the HD-zip I transcription factor AtHB13. Front Plant Sci. 2017;8:2118.
Article
PubMed
PubMed Central
Google Scholar
Roodbarkelari F, Groot EP. Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis. New Phytol. 2017;213(1):95–104.
Article
CAS
PubMed
Google Scholar
Perotti MF, Ribone PA, Cabello JV, Ariel FD, Chan RL. AtHB23 participates in the gene regulatory network controlling root branching, and reveals differences between secondary and tertiary roots. Plant J. 2019;100(6):1224–36.
Article
CAS
PubMed
Google Scholar
Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, et al. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell. 2001;13(7):1499–510.
CAS
PubMed
PubMed Central
Google Scholar
Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974;14(6):415–21.
Article
Google Scholar
Romani F, Moreno JE. Molecular mechanisms involved in functional macroevolution of plant transcription factors. New Phytol. 2021;230(4):1345–53.
Article
CAS
PubMed
Google Scholar
Chen YS, Chao YC, Tseng TW, Huang CK, Lo PC, Lu CA. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis. Plant Mol Biol. 2017;93(3):299–311.
Article
CAS
PubMed
Google Scholar
Balfagon D, Zandalinas SI, Mittler R, Gomez-Cadenas A. High temperatures modify plant responses to abiotic stress conditions. Physiol Plant. 2020.
Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32–43.
Article
PubMed
Google Scholar
Hernandez-Verdeja T, Vuorijoki L, Strand A. Emerging from the darkness: interplay between light and plastid signaling during chloroplast biogenesis. Physiol Plant. 2020;169(3):397–406.
Article
CAS
PubMed
Google Scholar
Medina-Puche L, Tan H, Dogra V, Wu M, Rosas-Diaz T, Wang L, et al. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell. 2020.
Ishihara H, Moraes TA, Pyl ET, Schulze WX, Obata T, Scheffel A, et al. Growth rate correlates negatively with protein turnover in Arabidopsis accessions. Plant J. 2017;91(3):416–29.
Article
CAS
PubMed
Google Scholar
Nelson CJ, Li L, Millar AH. Quantitative analysis of protein turnover in plants. Proteomics. 2014;14(4–5):579–92.
Article
CAS
PubMed
Google Scholar
Salih KJ, Duncan O, Li L, O'Leary B, Fenske R, Trosch J, et al. Impact of oxidative stress on the function, abundance, and turnover of the Arabidopsis 80S cytosolic ribosome. Plant J. 2020.
Jang S, Li HY. Overexpression of OsAP2 and OsWRKY24 in Arabidopsis results in reduction of plant size. Plant Biotechnol (Tokyo). 2018;35(3):273–9.
Article
CAS
Google Scholar
Jang S, Li HY, Kuo ML. Ectopic expression of Arabidopsis FD and FD PARALOGUE in rice results in dwarfism with size reduction of spikelets. Sci Rep. 2017;7:44477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzeszowiec W, Novokreshchenova M, Gabrys H. Chloroplasts in C3 grasses move in response to blue-light. Plant Cell Rep. 2020.
Das A, Christ B, Hortensteiner S. Characterization of the pheophorbide a oxygenase/phyllobilin pathway of chlorophyll breakdown in grasses. Planta. 2018;248(4):875–92.
Article
CAS
PubMed
Google Scholar
Sakuraba Y, Kim EY, Paek NC. Roles of rice PHYTOCHROME-INTERACTING FACTOR-LIKE1 (OsPIL1) in leaf senescence. Plant Signal Behav. 2017;12(9):e1362522.
Article
PubMed
PubMed Central
Google Scholar
Davis JL, Armengaud P, Larson TR, Graham IA, White PJ, Newton AC, et al. Contrasting nutrient-disease relationships: potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid. Plant Cell Environ. 2018;41(10):2357–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng X, Li L, Narsai R, De Clercq I, Whelan J, Berkowitz O. Mitochondrial signalling is critical for acclimation and adaptation to flooding in Arabidopsis thaliana. Plant J. 2020;103(1):227–47.
Article
CAS
PubMed
Google Scholar
Zhao J, Missihoun TD, Bartels D. The ATAF1 transcription factor is a key regulator of aldehyde dehydrogenase 7B4 (ALDH7B4) gene expression in Arabidopsis thaliana. Planta. 2018;248(4):1017–27.
Article
CAS
PubMed
Google Scholar
Zhou M, Paul AL, Ferl RJ. Data for characterization of SALK_084889, a T-DNA insertion line of Arabidopsis thaliana. Data Brief. 2017;13:253–8.
Article
PubMed
PubMed Central
Google Scholar
Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856–67.
Article
CAS
PubMed
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.
Article
CAS
PubMed
Google Scholar
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14(7):687.
Article
CAS
PubMed
Google Scholar
Steinegger M, Soding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35(11):1026–8.
Article
CAS
PubMed
Google Scholar
Kolde R, Kolde MR. Package ‘pheatmap’. R Package20152015; 1(7)790.
Google Scholar