Levitt J. Responses of plants to environmental stresses. Volume I: Chilling, freezing, and high temperature stresses. In: Kozlowski TT, editor. Physiological ecology. New York: Academic Press; 1980. p. 497.
Hincha DK, Espinoza C, Zuther E. Transcriptomic and metabolomic approaches to the analysis of plant freezing tolerance and cold acclimation. In: Improving crop resistance to abiotic stress. Weinheim: Wiley-VCH Verlag GmbH & Co. KG; 2012. p. 255–87.
Vyse K, Pagter M, Zuther E, Hincha DK. Deacclimation after cold acclimation - a crucial, but widely neglected part of plant winter survival. J Exp Bot. 2019;70(18):4595–604.
Article
PubMed
PubMed Central
Google Scholar
Wiest SC, Steponkus PL. Freeze-thaw injury to isolated spinach protoplasts and its simulation at above freezing temperatures. Plant Physiol. 1978;62(5):699–705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y. Responses of the plasma membrane to low temperatures. Physiol Plant. 2006;126(1):81–9.
Article
CAS
Google Scholar
Warmund MR, Guinan P, Fernandez G. Temperatures and cold damage to small fruit crops across the Eastern United States associated with the April 2007 freeze. Hortic Sci. 2008;43(6):1643–7.
Google Scholar
Gu L, Hanson PJ, Post WM, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T. The 2007 Eastern US spring freeze: increased cold damage in a warming world? BioScience. 2008;58(3):253–62.
Article
Google Scholar
Augspurger CK. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. Ecology. 2013;94(1):41–50.
Article
PubMed
Google Scholar
Unterberger C, Brunner L, Nabernegg S, Steininger KW, Steiner AK, Stabentheiner E, Monschein S, Truhetz H. Spring frost risk for regional apple production under a warmer climate. PLoS One. 2018;13:7.
Article
CAS
Google Scholar
Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles WR, Heiderman RR, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature. 2018;560(7718):368–71.
Article
CAS
PubMed
Google Scholar
Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol. 1984;35(1):543–84.
Article
CAS
Google Scholar
Palta JP, Levitt J, Stadelmann EJ. Freezing injury in onion bulb cells: II. Post-thawing injury or recovery. Plant Physiol. 1977;60(3):398–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen K, Renaut J, Sergeant K, Wei HUI, Arora R. Proteomic changes associated with freeze-thaw injury and post-thaw recovery in onion (Allium cepa L.) scales. Plant Cell Environ. 2013;36(4):892–905.
Article
PubMed
CAS
Google Scholar
Arora R, Palta JP. Perturbation of membrane calcium as a molecular mechanism of freezing injury. In: Cherry JH, editor. Environmental stress in plants. Berlin-Heidelberg: Springer; 1989. p. 281–90.
Chapter
Google Scholar
Gusta LV, Wisniewski ME, Trischuk RG. Patterns of freezing in plants: the influence of species, environment and experiential procedures. In: Gusta LV, Wisniewski ME, Tanino KK, editors. Plant cold hardiness: from the laboratory to the field. Wallingford: CABI; 2009. p. 214–25.
Chapter
Google Scholar
Arora R. Mechanism of freeze-thaw injury and recovery: a cool retrospective and warming up to new ideas. Plant Sci. 2018;270:301–13.
Article
CAS
PubMed
Google Scholar
Takahashi D, Bin L, Nakayama T, Kawamura Y, Uemura M. Plant plasma membrane proteomics for improving cold tolerance. Front Plant Sci. 2013;4:1–5.
CAS
Google Scholar
Hincha D, Sieg F, Bakaltcheva I, Köth H, Schmitt J. Freeze-thaw damage to thylakoid membranes: specific protection by sugars and proteins. In: Steponkus P, editor. Advances in low-temperature biology. London: JAI Press; 1996. p. 141–83.
Chapter
Google Scholar
Ehlert B, Hincha DK. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods. 2008;4(1):12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thalhammer A, Bryant G, Sulpice R, Hincha DK. Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol. 2014;166(1):190–201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arora R, Palta JP. A loss in the plasma membrane ATPase activity and its recovery coincides with incipient freeze-thaw injury and postthaw recovery in onion bulb scale tissue. Plant Physiol. 1991;95(3):846–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen K, Arora R. Understanding the cellular mechanism of recovery from freeze–thaw injury in spinach: possible role of aquaporins, heat shock proteins, dehydrin and antioxidant system. Physiol Plant. 2014;150(3):374–87.
Article
CAS
PubMed
Google Scholar
Zuther E, Juszczak I, Lee YP, Baier M, Hincha DK. Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Sci Rep. 2015;5:12199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagter M, Alpers J, Erban A, Kopka J, Zuther E, Hincha DK. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genomics. 2017;18(1):731.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carpenter JF, Crowe JH. The mechanism of cryoprotection of proteins by solutes. Cryobiology. 1988;25(3):244–55.
Article
CAS
PubMed
Google Scholar
Tarkowski ŁP, van den Ende W. Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Front Plant Sci. 2015;6:203.
Article
PubMed
PubMed Central
Google Scholar
Henson CA, Duke SH, Livingston DP 3rd. Metabolic changes in Avena sativa crowns recovering from freezing. PLoS One. 2014;9:3.
Article
CAS
Google Scholar
Zuther E, Schulz E, Childs LH, Hincha DK. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell Environ. 2012;35(10):1860–78.
Article
CAS
PubMed
Google Scholar
Atkin OK, Tjoelker MG. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 2003;8(7):343–51.
Article
CAS
PubMed
Google Scholar
Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK. Metabolomics of temperature stress. Physiol Plant. 2008;132(2):220–35.
CAS
PubMed
Google Scholar
Thalhammer A, Hincha DK, Zuther E. Measuring freezing tolerance: electrolyte leakage and chlorophyll fluorescence assays. In: Hincha DK, Zuther E, editors. Plant cold acclimation: methods and protocols. New York: Springer; 2014. p. 15–24.
Chapter
Google Scholar
Klotke J, Kopka J, Gatzke N, Heyer AG. Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation – evidence for a role of raffinose in cold acclimation. Plant Cell Environ. 2004;27(11):1395–404.
Article
CAS
Google Scholar
Knaupp M, Mishra KB, Nedbal L, Heyer AG. Evidence for a role of raffinose in stabilizing photosystem II during freeze–thaw cycles. Planta. 2011;234(3):477–86.
Article
CAS
PubMed
Google Scholar
Hincha DK, Höfner R, Schwab KB, Heber U, Schmitt JM. Membrane rupture is the common cause of damage to chloroplast membranes in leaves injured by freezing or excessive wilting. Plant Physiol. 1987;83(2):251–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ensminger I, Schmidt L, Lloyd J. Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions. New Phytol. 2008;177(2):428–42.
Article
CAS
PubMed
Google Scholar
Wallin G, Hall M, Slaney M, Räntfors M, Medhurst J, Linder S. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO2] and air temperature. Tree Physiol. 2013;33(11):1177–91.
Article
CAS
PubMed
Google Scholar
Saarinen T, Lundell R, Hänninen H. Recovery of photosynthetic capacity in Vaccinium vitis-idaea during mild spells in winter. Plant Ecol. 2011;212(9):1429–40.
Article
Google Scholar
Miroslavov EA, Kravkina IM. Comparative analysis of chloroplasts and mitochondria in leaf chlorenchyma from mountain plants grown at different altitudes. Ann Bot. 1991;68(3):195–200.
Article
Google Scholar
Körner C. Plant adaptation to cold climates. F1000Research. 2016;5:2769.
Article
Google Scholar
Paul MJ, Driscoll SP, Lawlor DW. Sink-regulation of photosynthesis in relation to temperature in sunflower and rape. J Exp Bot. 1992;43(2):147–53.
Article
Google Scholar
Talts P, Pärnik T, Gardeström P, Keerberg O. Respiratory acclimation in Arabidopsis thaliana leaves at low temperature. J Plant Physiol. 2004;161(5):573–9.
Article
CAS
PubMed
Google Scholar
Vanlerberghe GC. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci. 2013;14(4):6805–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matos AR, Hourton-Cabassa C, Ciçek D, Rezé N, Arrabaça JD, Zachowski A, Moreau F. Alternative oxidase involvement in cold stress response of Arabidopsis thaliana fad2 and FAD3+ cell suspensions altered in membrane lipid composition. Plant Cell Physiol. 2007;48(6):856–65.
Article
CAS
PubMed
Google Scholar
Umbach AL, Fiorani F, Siedow JN. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol. 2005;139(4):1806–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steffen KL, Arora R, Palta JP. Relative sensitivity of photosynthesis and respiration to freeze-thaw stress in herbaceous species : importance of realistic freeze-thaw protocols. Plant Physiol. 1989;89(4):1372–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee YP, Babakov A, de Boer B, Zuther E, Hincha DK. Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions. BMC Plant Biol. 2012;12:131.
Article
PubMed
PubMed Central
CAS
Google Scholar
Santarius KA. Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Physiol Plant. 1992;84(1):87–93.
Article
CAS
Google Scholar
Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 1987;24(4):324–31.
Article
CAS
PubMed
Google Scholar
Crowe JH, Carpenter JF, Crowe LM, Anchordoguy TJ. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology. 1990;27(3):219–31.
Article
CAS
Google Scholar
Gechev TS, van Breusegem F, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays. 2006;28(11):1091–101.
Article
CAS
PubMed
Google Scholar
Stoyanova S, Geuns J, Hideg É, van den Ende W. The food additives inulin and stevioside counteract oxidative stress. Int J Food Sci Nutr. 2011;62(3):207–14.
Article
CAS
PubMed
Google Scholar
Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7(11):1456–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15(2):89–97.
Article
CAS
PubMed
Google Scholar
Wanner LA, Junttila O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol. 1999;120:391–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hincha D, Müller M, Hillmann T, Schmitt J. Osmotic stress causes mechanical freeze-thaw damage to thylakoids in vitro and in vivo. In: Cherry J, editor. Environmental stress in plants. Berlin: Springer; 1989. p. 303–15.
Chapter
Google Scholar
Klinghammer M, Tenhaken R. Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls. J Exp Bot. 2007;58(13):3609–21.
Article
CAS
PubMed
Google Scholar
Li NN, Chen L, Li XH, Li Q, Zhang WB, Takechi K, Takano H, Lin XF. Overexpression of UDP-glucose dehydrogenase from Larix gmelinii enhances growth and cold tolerance in transgenic Arabidopsis thaliana. Biol Plant. 2017;61(1):95–105.
Article
CAS
Google Scholar
Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 1995;92(15):7090–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yaish MWF, Doxey AC, McConkey BJ, Moffatt BA, Griffith M. Cold-active winter rye glucanases with ice-binding capacity. Plant Physiol. 2006;141(4):1459–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hincha DK, Meins F Jr, Schmitt JM. β-1,3-glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant Physiol. 1997;114(3):1077–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaves MM, Oliveira MM. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot. 2004;55(407):2365–84.
Article
CAS
PubMed
Google Scholar
Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol. 2002;3(3):Reviews3004.
Article
PubMed
PubMed Central
Google Scholar
Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001;360(Pt 1):1–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohkama-Ohtsu N, Sasaki-Sekimoto Y, Oikawa A, Jikumaru Y, Shinoda S, Inoue E, Kamide Y, Yokoyama T, Hirai MY, Shirasu K, et al. 12-oxo-phytodienoic acid-glutathione conjugate is transported into the vacuole in Arabidopsis. Plant Cell Physiol. 2011;52(1):205–9.
Article
CAS
PubMed
Google Scholar
Marrs KA. The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:127–58.
Article
CAS
PubMed
Google Scholar
Cho Y, Kanehara K. Endoplasmic reticulum stress response in Arabidopsis roots. Front Plant Sci. 2017;8:144.
PubMed
PubMed Central
Google Scholar
Maruyama D, Endo T, Nishikawa S-I. BiP3 supports the early stages of female gametogenesis in the absence of BiP1 and BiP2 in Arabidopsis thaliana. Plant Signal Behav. 2015;10(7):e1035853.
PubMed
PubMed Central
Google Scholar
Srivastava R, Deng Y, Shah S, Rao AG, Howell SH. BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell. 2013;25(4):1416–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su PH, Li HM. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol. 2008;146(3):1231–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Latijnhouwers M, Xu XM, Moller SG. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta. 2010;232(3):567–78.
Article
CAS
PubMed
Google Scholar
Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S. Plasma membrane CRPK1-mediated phosphorylation of 14–3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol Cell. 2017;66(1):117–128.e115.
Article
CAS
PubMed
Google Scholar
Pignocchi C, Doonan JH. Interaction of a 14-3-3 protein with the plant microtubule-associated protein EDE1. Ann Bot. 2011;107(7):1103–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lichtenthaler HK, Miehé JA. Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci. 1997;2(8):316–20.
Article
Google Scholar
Glaubitz U, Li X, Köhl KI, van Dongen JT, Hincha DK, Zuther E. Differential physiological responses of different rice (Oryza sativa) cultivars to elevated night temperature during vegetative growth. Funct Plant Biol. 2014;41(4):437–48.
Article
CAS
PubMed
Google Scholar
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–7.
Article
CAS
Google Scholar
Sprenger H, Kurowsky C, Horn R, Erban A, Seddig S, Rudack K, Fischer A, Walther D, Zuther E, Kohl K, et al. The drought response of potato reference cultivars with contrasting tolerance. Plant Cell Environ. 2016;39(11):2370–89.
Article
CAS
PubMed
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3 - new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91.
Article
CAS
PubMed
Google Scholar
Kolde R. pheatmap: Pretty heatmaps [Software]; 2015.
Google Scholar
Stacklies W, Redestig H, Scholz M, Walther D. Selbig J: pcaMethods--a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23(9):1164–7.
Article
CAS
PubMed
Google Scholar