Lynch JP. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot. 2013;112(2):347–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch JP. Roots of the second green revolution. Aust J Bot. 2007;55(5):493–512.
Article
Google Scholar
Wasson AP, Chiu GS, Zwart AB, Binns TR. Differentiating wheat genotypes by Bayesian hierarchical nonlinear mixed modeling of wheat root density. Front Plant Sci. 2017;8:282.
Article
PubMed
PubMed Central
Google Scholar
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. Let the concept of trait be functional! Oikos. 2007;116(5):882–92.
Article
Google Scholar
Garnier E, Navas M-L. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development. 2012;32(2):365–99.
Article
Google Scholar
Schoppach R, Wauthelet D, Jeanguenin L, Sadok W. Conservative water use under high evaporative demand associated with smaller root metaxylem and limited trans-membrane water transport in wheat. Funct Plant Biol. 2014;41(3):257–69.
Article
CAS
PubMed
Google Scholar
Siddique KHM, Regan KL, Tennant D, Thomson BD. Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron. 2001;15(4):267–80.
Article
Google Scholar
Kulkarni M, Soolanayakanahally R, Ogawa S, Uga Y, Selvaraj MG, Kagale S. Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Frontiers in Chemistry. 2017;5:106.
Article
PubMed
PubMed Central
Google Scholar
Lynch J. Root architecture and plant productivity. Plant Physiol. 1995;109(1):7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Djalovic I, Rengel Z. Phenotyping for Root Traits. In: Kumar J, Pratap A, Kumar S, editors. Phenomics in crop plants: trends, options and limitations. New Delhi: Springer India; 2015. p. 101–28.
Google Scholar
De Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 2007;12(10):474–81.
Article
PubMed
CAS
Google Scholar
Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Le Gouis J, Griffiths S, Bennett MJ, King J. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot. 2015;66(8):2283–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waines JG, Ehdaie B. Domestication and crop physiology: roots of green-revolution wheat. Ann Bot. 2007;100(5):991–8.
Article
PubMed
PubMed Central
Google Scholar
Bonser AM, Lynch J, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol. 1996;132:281–8.
Article
CAS
PubMed
Google Scholar
Liao H, Yan X, Rubio G, Beebe SE, Blair MW, Lynch JP. Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol. 2004;31(10):959–70.
Article
CAS
PubMed
Google Scholar
Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WBT, Wojciechowski T, Young IM. Root phenomics of crops: opportunities and challenges. Funct Plant Biol. 2009;36(11):922–9.
Article
PubMed
Google Scholar
Manschadi AM, Hammer GL, Christopher JT. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil. 2008;303(1–2):115–29.
Article
CAS
Google Scholar
Wu J, Wu Q, Pagès L, Yuan Y, Zhang X, Du M, Tian X, Li Z. RhizoChamber-monitor: a robotic platform and software enabling characterization of root growth. Plant Methods. 2018;14(1):44.
Article
PubMed
PubMed Central
Google Scholar
Wiese AH, Riemenschneider DE, Ronald S Jr. An inexpensive rhizotron design for two-dimensional, horizontal root growth measurements. Tree Planters' Notes. 2005;51(40–46):51.
Google Scholar
Narayanan S, Mohan A, Gill KS, Prasad PV. Variability of root traits in spring wheat germplasm. PLoS One. 2014;9(6):e100317.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bai C, Liang Y, Hawkesford MJ. Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot. 2013;64(6):1745–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT. High-throughput phenotyping of seminal root traits in wheat. Plant Methods. 2015;11(1):13.
Article
PubMed
PubMed Central
Google Scholar
Palta JA, Fillery IR, Rebetzke GJ. Restricted-tillering wheat does not lead to greater investment in roots and early nitrogen uptake. Field Crop Res. 2007;104(1–3):52–9.
Article
Google Scholar
Figueroa-Bustos V, Palta JA, Chen Y, Siddique KH. Characterization of root and shoot traits in wheat cultivars with putative differences in root system size. Agronomy-Basel. 2018;8(7):109.
Chen Y, Dunbabin V, Diggle A, Siddique K, Rengel Z. Development of a novel semi-hydroponic phenotyping system for studying root architecture. Funct Plant Biol. 2011;38(5):355–63.
Article
PubMed
Google Scholar
Chen YL, Dunbabin VM, Diggle AJ, Siddique KHM, Rengel Z. Assessing variability in root traits of wild Lupinus angustifolius germplasm: basis for modelling root system structure. Plant Soil. 2012;354(1–2):141–55.
Article
CAS
Google Scholar
Chen Y, Shan F, Nelson M, Siddique K, Rengel Z. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius. J Exp Bot. 2016;67(12):3683–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Ghanem M, Siddique K. Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. J Exp Bot. 2017;68(8):1987–99.
CAS
PubMed
Google Scholar
Qiao S, Fang Y, Wu A, Xu B, Zhang S, Deng X, Djalovic I, Siddique KH, Chen Y. Dissecting root trait variability in maize genotypes using the semi-hydroponic phenotyping platform. Plant Soil. 2019;439(1–2):75–90.
Article
CAS
Google Scholar
Demissie A, Habtemariam G, Gebremariam H. Wheat genetic resources in Ethiopia. (1991) Wheat research in Ethiopia: a historical perspective IAR/CIMMYT, Addis Ababa; 1991. p. 33–46.
Google Scholar
Khodadadi M, Fotokian MH, Miransari M. Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Aust J Crop Sci. 2011;5(1):17.
Google Scholar
Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet. 2005;111(1):162–70.
Article
CAS
PubMed
Google Scholar
Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M. A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet. 2007;114(7):1265–75.
Article
PubMed
Google Scholar
Gregory PJ. Plant roots: growth, activity and interactions with the soil. Oxford: Blackwell Publishing Ltd; 2006.
Lynch JP, Wojciechowski T. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot. 2015;66(8):2199–210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narayanan S, Vara Prasad P. Characterization of a spring wheat association mapping panel for root traits. Agron J. 2014;106(5):1593–604.
Article
Google Scholar
Palta J, Watt M. Vigorous crop root systems: form and function for improving the capture of water and nutrients. Crop Physiology–Applications for genetic improvement and agronomy. San Diego: Elsevier; 2009.
Book
Google Scholar
Palta JA, Chen X, Milroy SP, Rebetzke GJ, Dreccer MF, Watt M. Large root systems: are they useful in adapting wheat to dry environments? Funct Plant Biol. 2011;38(5):347–54.
Article
PubMed
Google Scholar
Liao M, Fillery IR, Palta JA. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Funct Plant Biol. 2004;31(2):121–9.
Article
CAS
PubMed
Google Scholar
Palta JA, Turner NC. Crop root system traits cannot be seen as a silver bullet delivering drought resistance. Plant Soil. 2019;439(1–2):31–43.
Article
CAS
Google Scholar
Saradadevi R, Bramley H, Palta JA, Siddique KH. Stomatal behaviour under terminal drought affects post-anthesis water use in wheat. Funct Plant Biol. 2017;44(3):279–89.
Article
PubMed
Google Scholar
Fang Y, Du Y, Wang J, Wu A, Qiao S, Xu B, Zhang S, Siddique KHM, Chen Y. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front Plant Sci. 2017;8:672.
Article
PubMed
PubMed Central
Google Scholar
Aziz MM, Palta JA, Siddique KH, Sadras VO. Five decades of selection for yield reduced root length density and increased nitrogen uptake per unit root length in Australian wheat varieties. Plant Soil. 2017;413(1–2):181–92.
Article
CAS
Google Scholar
Figueroa-Bustos V, Palta JA, Chen Y, Siddique KHM. Early season drought largely reduces grain yield in wheat cultivars with smaller root systems. Plants. 2019;8(9):305.
Article
PubMed Central
Google Scholar
Gregory PJ, Atwell BJ. The fate of carbon in pulse-labelled crops of barley and wheat. Plant Soil. 1991;136(2):205–13.
Article
CAS
Google Scholar
Palta JA, Gregory PJ. Drought affects the fluxes of carbon to roots and soil in 13C pulse-labelled plants of wheat. Soil Biol Biochem. 1997;29(9–10):1395–403.
Article
CAS
Google Scholar
Palta JA, Turner NC, French RJ. The yield performance of lupin genotypes under terminal drought in a Mediterranean-type environment. Aust J Agric Res. 2004;55(4):449–59.
Article
Google Scholar
Lilley J, Kirkegaard J. Benefits of increased soil exploration by wheat roots. Field Crop Res. 2011;122(2):118–30.
Article
Google Scholar
Wilson P, Rebetzke G, Condon A. Pyramiding greater early vigour and integrated transpiration efficiency in bread wheat; trade-offs and benefits. Field Crop Res. 2015;183:102–10.
Article
Google Scholar
Ayalew H, Liu H, Yan G. Identification and validation of root length QTLs for water stress resistance in hexaploid wheat (Titicum aestivum L.). Euphytica. 2017;213(6):126.
Article
Google Scholar
Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Sci Rep. 2014;4:5563.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirkegaard J, Lilley J, Howe G, Graham J. Impact of subsoil water use on wheat yield. Aust J Agric Res. 2007;58(4):303–15.
Article
Google Scholar
Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker M, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn A, Pronk A. Specific root length as an indicator of environmental change. Plant Biosyst. 2007;141(3):426–42.
Article
Google Scholar
Comas L, Becker S, Cruz VMV, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. Front Plant Sci. 2013;4:442.
Article
PubMed
PubMed Central
Google Scholar
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 2013;45(9):1097–102.
Article
CAS
PubMed
Google Scholar
Watt M, Moosavi S, Cunningham S, Kirkegaard J, Rebetzke G, Richards R. A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites. Ann Bot. 2013;112(2):447–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manschadi A, Manske G, Vlek P. Root architecture and resource acquisition: wheat as a model plant. In: Plant roots The hidden half. 4th ed. Boca Raton: CRC Press; 2013. p. 22.
Google Scholar
Lynch JP. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol. 2019;223:548–64.
Article
PubMed
Google Scholar
Roumet C, Urcelay C, Díaz S. Suites of root traits differ between annual and perennial species growing in the field. New Phytol. 2006;170(2):357–68.
Article
PubMed
Google Scholar
Chen Y, Dunbabin V, Postma J, Diggle A, Palta J, Lynch J, Siddique K, Rengel Z. Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes. Plant Soil. 2011;348(1–2):345–64.
Article
CAS
Google Scholar
Li P, Chen J, Wu P, Zhang J, Chu C, See D, Brown-Guedira G, Zemetra R, Souza E. Quantitative trait loci analysis for the effect of Rht-B1 dwarfing gene on coleoptile length and seedling root length and number of bread wheat. Crop Sci. 2011;51(6):2561–8.
Article
Google Scholar
Zhu J, Ingram PA, Benfey PN, Elich T. From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol. 2011;14(3):310–7.
Article
PubMed
Google Scholar
Das A, Schneider H, Burridge J, Ascanio AKM, Wojciechowski T, Topp CN, Lynch JP, Weitz JS, Bucksch A. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods. 2015;11(1):51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Y, Palta J, Clements J, Buirchell B, Siddique KH, Rengel Z. Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crop Res. 2014;165:61–70.
Article
Google Scholar
Jolliffe I. Principal component analysis. New York: Springer-Verlag; 2002.