FAO. Global agriculture towards 2050. Rome: FAO; 2009.
Google Scholar
Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky B, Fujimori S, Hasegawa T, Havlik P, et al. The future of food demand: understanding differences in global economic models. Agric Econ. 2014;45(1):51–67.
Article
Google Scholar
Farooq M, Hussain M, Wahid A, Siddique KHM. Drought stress in plants: An overview. In: Plant Responses to Drought Stress. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 1–33.
Google Scholar
Vicente-Serrano SM, Beguería S, Camarero JJ. Drought severity in a changing climate. In: Handbook of drought and water scarcity: CRC Press; Boca Raton, USA, 2017. p. 279–303.
Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeandroz S, Lamotte O. Editorial: plant responses to biotic and abiotic stresses: lessons from cell signaling. Front Plant Sci. 2017;8:1772.
Article
PubMed
PubMed Central
Google Scholar
Distelfeld A, Pearce SP, Avni R, Scherer B, Uauy C, Piston F, Slade A, Zhao R, Dubcovsky J. Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Mol Biol. 2012;78(4–5):515–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feldman M, Levy AA. Genome evolution due to allopolyploidization in wheat. Genetics. 2012;192(3):763–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007;316(5833):1862–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 2010;61(6):1041–52.
Article
CAS
PubMed
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9(10):490–8.
Article
CAS
PubMed
Google Scholar
Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K. Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Mol Biol. 2004;56(1):29–55.
Article
CAS
PubMed
Google Scholar
Batista R, Fonseca C, Planchon S, Negrao S, Renaut J, Oliveira MM. Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants. Sci Rep. 2017;7(1):10624.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cruz de Carvalho MH. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behav. 2008;3(3):156–65.
Article
PubMed
PubMed Central
Google Scholar
Morgan JM. Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol. 1984;35(1):299–319.
Article
Google Scholar
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front Chem. 2018;6:26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants (Basel). 2015;4(1):112–66.
Article
CAS
Google Scholar
Bhargava S, Sawant K. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed. 2013;132(1):21–32.
Article
CAS
Google Scholar
Ijaz R, Ejaz J, Gao S, Liu T, Imtiaz M, Ye Z, Wang T. Overexpression of annexin gene AnnSp2, enhances drought and salt tolerance through modulation of ABA synthesis and scavenging ROS in tomato. Sci Rep. 2017;7(1):12087.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abdeen A, Schnell J, Miki B. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics. 2010;11:69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dai C, Lee Y, Lee IC, Nam HG, Kwak JM. Calmodulin 1 regulates senescence and ABA response in Arabidopsis. Front Plant Sci. 2018;9:803.
Article
PubMed
PubMed Central
Google Scholar
Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ. Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot. 2012;63(9):3499–509.
Article
CAS
PubMed
Google Scholar
Kurahashi Y, Terashima A, Takumi S. Variation in dehydration tolerance, ABA sensitivity and related gene expression patterns in D-genome progenitor and synthetic hexaploid wheat lines. Int J Mol Sci. 2009;10(6):2733–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao X, Xiong W, Ye T, Wu Y. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot. 2012;63(7):2579–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 2003;22(11):2623–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arias CL, Pavlovic T, Torcolese G, Badia MB, Gismondi M, Maurino VG, Andreo CS, Drincovich MF, Gerrard Wheeler MC, Saigo M. NADP-dependent malic enzyme 1 participates in the abscisic acid response in Arabidopsis thaliana. Front Plant Sci. 2018;9:1637.
Article
PubMed
PubMed Central
Google Scholar
Yang L, Wu L, Chang W, Li Z, Miao M, Li Y, Yang J, Liu Z, Tan J. Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis. Plant Physiol Biochem. 2018;123:34–42.
Article
CAS
PubMed
Google Scholar
Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell. 2005;17(4):1105–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulik A, Wawer I, Krzywinska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases--key regulators of plant response to abiotic stresses. OMICS. 2011;15(12):859–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lou D, Wang H, Liang G, Yu D. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci. 2017;8:993.
Article
PubMed
PubMed Central
Google Scholar
Dey A, Samanta MK, Gayen S, Maiti MK. The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC Plant Biol. 2016;16(1):158.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 2009;149(1):88–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciftci-Yilmaz S, Mittler R. The zinc finger network of plants. Cell Mol Life Sci. 2008;65(7–8):1150–60.
Article
CAS
PubMed
Google Scholar
Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant. 2008;133(3):481–9.
Article
CAS
PubMed
Google Scholar
Kiełbowicz-Matuk A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci. 2012;185:78–85.
Article
PubMed
CAS
Google Scholar
Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant. 2010;3(3):469–90.
Article
CAS
PubMed
Google Scholar
Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 2013;19(3):307–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL. Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci. 2016;7:1029.
Article
PubMed
PubMed Central
Google Scholar
Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6(5):410–7.
Article
CAS
PubMed
Google Scholar
Roy S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal Behav. 2016;11(1):e1117723.
Article
PubMed
CAS
Google Scholar
Liu X, Wang T, Bartholomew E, Black K, Dong M, Zhang Y, Yang S, Cai Y, Xue S, Weng Y, et al. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.). Hortic Res. 2018;5(1):31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J. Myint Phyu sin Htwe N, Fujita Y, Sekita S, Shinozaki K: soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J. 2015;81(3):505–18.
Article
CAS
PubMed
Google Scholar
Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol. 2017;59(2):86–101.
Article
CAS
PubMed
Google Scholar
Wang F, Chen HW, Li QT, Wei W, Li W, Zhang WK, Ma B, Bi YD, Lai YC, Liu XL, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J. 2015;83(2):224–36.
Article
CAS
PubMed
Google Scholar
Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol. 2007;65(6):799–815.
Article
CAS
PubMed
Google Scholar
Yang A, Dai X, Zhang WH. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 2012;63(7):2541–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SB, Kim H, Kim RJ, Suh MC. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep. 2014;33(9):1535–46.
Article
CAS
PubMed
Google Scholar
Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot. 2010;61(10):2807–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, et al. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell. 2013;25(6):2115–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 2004;136(1):2734–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davletova S, Schlauch K, Coutu J, Mittler R. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 2005;139(2):847–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett. 2006;580(28–29):6537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R. The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem. 2007;282(12):9260–8.
Article
CAS
PubMed
Google Scholar
Shi H, Wang X, Ye T, Chen F, Deng J, Yang P, Zhang Y, Chan Z. The cysteine2/histidine2-type transcription factor zinc finger of Arabidopsis thaliana 6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and c-repeat-binding factor genes in arabidopsis. Plant Physiol. 2014;165(3):1367–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett. 2008;582(7):1037–43.
Article
CAS
PubMed
Google Scholar
Zhang H, Ni L, Liu Y, Wang Y, Zhang A, Tan M, Jiang M. The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. J Integr Plant Biol. 2012;54(7):500–10.
Article
CAS
PubMed
Google Scholar
Zhang H, Liu Y, Wen F, Yao D, Wang L, Guo J, Ni L, Zhang A, Tan M, Jiang M. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J Exp Bot. 2014;65(20):5795–809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005;17(1):268–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rizhsky L, Davletova S, Liang H, Mittler R. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem. 2004;279(12):11736–43.
Article
CAS
PubMed
Google Scholar
Cheuk A, Houde M. Genome wide identification of C1-2i zinc finger proteins and their response to abiotic stress in hexaploid wheat. Mol Gen Genomics. 2016;291(2):873–90.
Article
CAS
Google Scholar
Ali-Benali MA, Badawi M, Houde Y, Houde M. Identification of oxidative stress-responsive C2H2 zinc fingers associated with Al tolerance in near-isogenic wheat lines. Plant Soil. 2012;366(1–2):199–212.
Google Scholar
Sun B, Zhao Y, Shi S, Yang M, Xiao K. TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiol Biochem. 2019;136:127–42.
Article
CAS
PubMed
Google Scholar
Cheuk A, Houde M. A new barley stripe mosaic virus allows large protein overexpression for rapid function analysis. Plant Physiol. 2018;176(3):1919–31.
Article
CAS
PubMed
Google Scholar
Burgess P, Huang B: Mechanisms of hormone regulation for drought tolerance in plants. In: Drought Stress Tolerance in Plants, Vol 1. Edited by Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran L-SP, 1. Switzerland: Springer International Publishing;2016: 45–75.
Chapter
Google Scholar
Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH: Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot. 2002;89 Spec No:841–850.
Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011;155(1):93–100.
Article
CAS
PubMed
Google Scholar
Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. 2014;2014:360438.
Article
CAS
Google Scholar
Trchounian A, Petrosyan M, Sahakyan N. Plant cell redox homeostasis and reactive oxygen species. In: Gupta DK, Palma JM, Corpas FJ, editors. Redox state as a central regulator of plant-cell stress responses. Cham: Springer International Publishing; 2016. p. 25–50.
Chapter
Google Scholar
Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol. 2004;54(5):767–81.
Article
CAS
PubMed
Google Scholar
Kurepin LV, Dahal KP, Savitch LV, Singh J, Bode R, Ivanov AG, Hurry V, Huner NP. Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int J Mol Sci. 2013;14(6):12729–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matsubayashi Y, Ogawa M, Kihara H, Niwa M, Sakagami Y. Disruption and overexpression of Arabidopsis phytosulfokine receptor gene affects cellular longevity and potential for growth. Plant Physiol. 2006;142(1):45–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabaldón T, Koonin EV. Functional and evolutionary implications of gene orthology. Nat Rev Genet. 2013;14(5):360–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Cano-Delgado AI, de Vries S, Dresselhaus T, Felix G, et al. Tackling drought stress: receptor-like kinases present new approaches. Plant Cell. 2012;24(6):2262–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dievart A, Perin C, Hirsch J, Bettembourg M, Lanau N, Artus F, Bureau C, Noel N, Droc G, Peyramard M, et al. The phenome analysis of mutant alleles in Leucine-rich repeat receptor-like kinase genes in rice reveals new potential targets for stress tolerant cereals. Plant Sci. 2016;242:240–9.
Article
CAS
PubMed
Google Scholar
Causier B, Ashworth M, Guo W, Davies B. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol. 2012;158(1):423–38.
Article
CAS
PubMed
Google Scholar
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65(5):1229–40.
Article
CAS
PubMed
Google Scholar
Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol. 2018;60(9):805–26.
Article
CAS
PubMed
Google Scholar
Liu Y, He C. A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol. 2017;11:192–204.
Article
CAS
PubMed
Google Scholar
Sinha AK, Jaggi M, Raghuram B, Tuteja N. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav. 2011;6(2):196–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen XC, Kim SH, Lee K, Kim KE, Liu XM, Han HJ, Hoang MH, Lee SW, Hong JC, Moon YH, et al. Identification of a C2H2-type zinc finger transcription factor (ZAT10) from Arabidopsis as a substrate of MAP kinase. Plant Cell Rep. 2012;31(4):737–45.
Article
CAS
PubMed
Google Scholar
Liu XM, Nguyen XC, Kim KE, Han HJ, Yoo J, Lee K, Kim MC, Yun DJ, Chung WS. Phosphorylation of the zinc finger transcriptional regulator ZAT6 by MPK6 regulates Arabidopsis seed germination under salt and osmotic stress. Biochem Biophys Res Commun. 2013;430(3):1054–9.
Article
CAS
PubMed
Google Scholar
Shen G, Kuppu S, Venkataramani S, Wang J, Yan J, Qiu X, Zhang H. Ankyrin repeat-containing protein 2A is an essential molecular chaperone for peroxisomal membrane-bound ascorbate peroxidase 3 in Arabidopsis. Plant Cell. 2010;22(3):811–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu XM, Lin H, Maple J, Bjorkblom B, Alves G, Larsen JP, Moller SG. The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation. J Cell Sci. 2010;123(Pt 10):1644–51.
Article
CAS
PubMed
Google Scholar
Li Z, Huang J, Wang Z, Meng F, Zhang S, Wu X, Zhang Z, Gao Z. Overexpression of arabidopsis nucleotide-binding and leucine-rich repeat genes RPS2 and RPM1(D505V) confers broad-spectrum disease resistance in rice. Front Plant Sci. 2019;10:417.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hell R, Wirtz M. Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. Arabidopsis Book. 2011;9:e0154.
Article
PubMed
PubMed Central
Google Scholar
Shu K, Yang W. E3 ubiquitin ligases: Ubiquitous actors in plant development and abiotic stress responses. Plant Cell Physiol. 2017;58(9):1461–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J. 2011;65(2):194–205.
Article
CAS
PubMed
Google Scholar
Liu YC, Wu YR, Huang XH, Sun J, Xie Q. AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol Plant. 2011;4(6):938–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bemer M, van Dijk ADJ, Immink RGH, Angenent GC. Cross-family transcription factor interactions: An additional layer of gene regulation. Trends Plant Sci. 2017;22(1):66–80.
Article
CAS
PubMed
Google Scholar
Agarwal P, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant. 2010;54(2):201–12.
Article
CAS
Google Scholar
Lata C, Yadav A, Prasad M. Role of plant transcription factors in abiotic stress tolerance. In: Abiotic stress response in plants-physiological, biochemical and genetic perspectives. Rijeka: InTech; 2011. p. 269–96.
Google Scholar
Häusler RE, Hirsch HJ, Kreuzaler F, Peterhänsel C. Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J Exp Bot. 2002;53(369):591–607.
Article
PubMed
Google Scholar
Doubnerova Hyskova V, Miedzinska L, Dobra J, Vankova R, Ryslava H. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. J Plant Physiol. 2014;171(5):19–25.
Article
CAS
PubMed
Google Scholar
Laporte MM, Shen B, Tarczynski MC. Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot. 2002;53(369):699–705.
Article
CAS
PubMed
Google Scholar
Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev. 2011;43(2):266–80.
Article
CAS
PubMed
Google Scholar
Kumar S, Trivedi PK. Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci. 2018;9(751):751.
Article
PubMed
PubMed Central
Google Scholar
Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol. 2002;3(3):REVIEWS3004.
Article
PubMed
PubMed Central
Google Scholar
Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A. 2007;104(49):19631–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrant JM. Mechanisms of desiccation tolerance in angiosperm resurrection plants. In: Plant desiccation tolerance; 2007. p. 51–90.
Chapter
Google Scholar
Zhang X, Liu S, Takano T. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechnol Lett. 2008;30(7):1289–94.
Article
PubMed
CAS
Google Scholar
Jarzyniak KM, Jasinski M. Membrane transporters and drought resistance - a complex issue. Front Plant Sci. 2014;5:687.
Article
PubMed
PubMed Central
Google Scholar
Pandey JK, Dash SK, Biswal B. Loss in photosynthesis during senescence is accompanied by an increase in the activity of beta-galactosidase in leaves of Arabidopsis thaliana: modulation of the enzyme activity by water stress. Protoplasma. 2017;254(4):1651–9.
Article
CAS
PubMed
Google Scholar
Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006;25(12):1263–74.
Article
CAS
PubMed
Google Scholar
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell. 2006;18(5):1292–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 2000;124(4):1854–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62(14):4731–48.
Article
CAS
PubMed
Google Scholar
Checker VG, Khurana P. Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress. Plant Cell Rep. 2013;32(11):1729–41.
Article
CAS
PubMed
Google Scholar
Zhao MR, Li F, Fang Y, Gao Q, Wang W. Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma. 2011;248(2):313–23.
Article
PubMed
Google Scholar
Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D. Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci. 2012;69(19):3175–86.
Article
CAS
PubMed
Google Scholar
Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and WAX production. Plant Cell. 2003;15(5):1170–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jager K, Fabian A, Eitel G, Szabo L, Deak C, Barnabas B, Papp I. A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress. J Plant Physiol. 2014;171(14):1256–66.
Article
CAS
PubMed
Google Scholar
Pan Y, Li J, Jiao L, Li C, Zhu D, Yu J. A non-specific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress. Front Plant Sci. 2016;7(1752):1752.
PubMed
PubMed Central
Google Scholar
Chen YS, Qiu XB. Ubiquitin at the crossroad of cell death and survival. Chin J Cancer. 2013;32(12):640–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Love AJ, Milner JJ, Sadanandom A. Timing is everything: regulatory overlap in plant cell death. Trends Plant Sci. 2008;13(11):589–95.
Article
CAS
PubMed
Google Scholar
Rogers HJ. Cell death and organ development in plants. Curr Top Dev Biol. 2005;71:225–61.
Article
CAS
PubMed
Google Scholar
Yoda H, Hiroi Y, Sano H. Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol. 2006;142(1):193–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malinovsky FG, Brodersen P, Fiil BK, McKinney LV, Thorgrimsen S, Beck M, Nielsen HB, Pietra S, Zipfel C, Robatzek S, et al. Lazarus1, a DUF300 protein, contributes to programmed cell death associated with Arabidopsis acd11 and the hypersensitive response. PLoS One. 2010;5(9):e12586.
Article
PubMed
PubMed Central
CAS
Google Scholar
Epple P, Mack AA, Morris VR, Dangl JL. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci U S A. 2003;100(11):6831–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell. 1997;88(5):685–94.
Article
CAS
PubMed
Google Scholar
Wituszynska W, Slesak I, Vanderauwera S, Szechynska-Hebda M, Kornas A, Van Der Kelen K, Muhlenbock P, Karpinska B, Mackowski S, Van Breusegem F, et al. Lesion simulating disease1, enhanced disease susceptibility1, and phytoalexin deficient4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis. Plant Physiol. 2013;161(4):1795–805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szechynska-Hebda M, Czarnocka W, Hebda M, Bernacki MJ, Karpinski S. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. Plant Cell Rep. 2016;35(3):527–39.
Article
CAS
PubMed
Google Scholar
Czolpinska M, Rurek M. Plant glycine-rich proteins in stress response: An emerging, still prospective story. Front Plant Sci. 2018;9:302.
Article
PubMed
PubMed Central
Google Scholar
Yang DH, Kwak KJ, Kim MK, Park SJ, Yang KY, Kang H. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Sci. 2014;214:106–12.
Article
CAS
PubMed
Google Scholar
Mangeon A, Magioli C, Menezes-Salgueiro AD, Cardeal V, de Oliveira C, Galvao VC, Margis R, Engler G, Sachetto-Martins G. AtGRP5, a vacuole-located glycine-rich protein involved in cell elongation. Planta. 2009;230(2):253–65.
Article
CAS
PubMed
Google Scholar
Carver B, Whitmore W, Smith E, Bona L. Registration of four aluminum-tolerant winter wheat germplasms and two susceptible near-isolines. Crop Sci. 1993;33(5):1113–4.
Article
Google Scholar
Yuan C, Li C, Yan L, Jackson AO, Liu Z, Han C, Yu J, Li D. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One. 2011;6(10):e26468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheuk A, Houde M. A rapid and efficient method for uniform gene expression using the barley stripe mosaic virus. Plant Methods. 2017;13(1):24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao FH, Xue GP. Analysis of the promoter activity of late embryogenesis abundant protein genes in barley seedlings under conditions of water deficit. Plant Cell Rep. 2001;20(7):667–73.
Article
CAS
Google Scholar
Andrews S: FastQC: a quality control tool for high throughput sequence data. 2010. Available online at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goecks J, Nekrutenko A, Taylor J, Galaxy T. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11(8):R86.
Article
PubMed
PubMed Central
Google Scholar
Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F. Manke T: deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44(W1):W160–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27(5):885–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Jambunathan N. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol Biol. 2010;639:292–8.
PubMed
Google Scholar
Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87.
Article
CAS
PubMed
Google Scholar
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22(5):867–80.
CAS
Google Scholar
Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. 2nd ed: Academic Press, Cambridge, USA; 1974. p. 673–84.