Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi E, Franssen H, et al. Fate map of Medicago truncatula root nodules. Development. 2014;141:3517–28.
Article
CAS
PubMed
Google Scholar
Schauser L, Roussis A, Stiller J, Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature. 1999;402:191–5.
Article
CAS
PubMed
Google Scholar
Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, Eschstruth A, et al. Medicago truncatula NIN is essential for Rhizobial-independent nodule organogenesis induced by autoactive calcium/Calmodulin-dependent protein kinase. Plant Physiol. 2007;144:324–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desbrosses GJ, Stougaard J. Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host and Microbe. 2011;10:348–58.
Article
CAS
PubMed
Google Scholar
Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, et al. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A. 2008;105:20540–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vernié T, Kim J, Frances L, Ding Y, Sun J, Guan D, et al. The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root. Plant Cell. 2015;27:3410–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Zeijl A. Op Den camp RHM, Deinum EE, Charnikhova T, Franssen H, Op Den camp HJM, et al. rhizobium Lipo-chitooligosaccharide signaling triggers accumulation of Cytokinins in Medicago truncatula roots. Mol Plant. 2015;8:1213–26.
Article
PubMed
CAS
Google Scholar
Soyano T, Kouchi H, Hirota A, Hayashi M. NODULE INCEPTION directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet. 2013;9:e1003352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Rutten L, Limpens E, van der Molen T, van Velzen R, Chen R, et al. A remote cis-regulatory region is required for NIN expression in the Pericycle to initiate nodule primordium formation in Medicago truncatula. Plant Cell. 2019;31:68–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Couzigou J-MJ, Zhukov V, Mondy S, Abu el Heba G, Cosson V, THN E, et al. NODULE ROOT and COCHLEATA maintain nodule development and are legume Orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell. 2012;24:4498–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magne K, George J, Berbel Tornero A, Broquet B, Madueño F, Andersen SU, et al. Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development. Plant J. 2018;94:880–94.
Article
CAS
PubMed
Google Scholar
Magne K, Couzigou J-M, Schiessl K, Liu S, George J, Zhukov V, et al. MtNODULE ROOT1 and MtNODULE ROOT2 are essential for indeterminate nodule identity. Plant Physiol. 2018;178:295–316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. 2008;55:504–13.
Article
CAS
PubMed
Google Scholar
Holmes P, Goffard N, Weiller GF, Rolfe BG, Imin N. Transcriptional profiling of Medicago truncatula meristematic root cells. BMC Plant Biol. 2008;8:21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aida M, Tasaka M. Genetic control of shoot organ boundaries. Curr Opin Plant Biol. 2006;9:72–7.
Article
CAS
PubMed
Google Scholar
Khan M, Xu H, Hepworth SR. BLADE-ON-PETIOLE genes: setting boundaries in development and defense. Plant Sci. 2014;215–216:157–71.
Article
PubMed
CAS
Google Scholar
Žádníková P, Simon R. How boundaries control plant development. Curr Opin Plant Biol. 2014;17:116–25.
Article
PubMed
Google Scholar
Hepworth SR, Pautot VA. Beyond the divide: boundaries for patterning and stem cell regulation in plants. Front Plant Sci. 2015;6:1052.
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Hasson A, Rossmann S, Theres K. Divide et impera: boundaries shape the plant body and initiate new meristems. New Phytol. 2016;209:485–98.
Article
CAS
PubMed
Google Scholar
Jun JH, Ha CM, Fletcher JC. BLADE-ON-PETIOLE1 coordinates organ determinacy and axial polarity in Arabidopsis by directly activating ASYMMETRIC LEAVES2. Plant Cell. 2010;22:62–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bell EM, Lin W -C., Husbands AY, Yu L, Jaganatha V, Jablonska B, et al. Arabidopsis LATERAL ORGAN BOUNDARIES negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc Natl Acad Sci 2012;109:21146–21151.
Article
CAS
Google Scholar
Ha CM, Kim G-T, Kim BC, Jun JH, Soh MS, Ueno Y, et al. The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development. 2003;130:161–72.
Article
CAS
PubMed
Google Scholar
Ha CM, Jun JH, Nam HG, Fletcher JC. BLADE-ON-PETIOLE1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and Adaxial-Abaxial polarity genes. Plant Cell. 2007;19:1809–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKim SM, Stenvik G-E, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, et al. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development. 2008;135:1537–46.
Article
CAS
PubMed
Google Scholar
Couzigou JM, Magne K, Mondy S, Cosson V, Clements J, Ratet P. The legume NOOT-BOP-COCH-LIKE (NBCL) genes are conserved regulators of abscission, a major agronomical trait in cultivated crops. New Phytol. 2016;209:228–40.
Article
CAS
PubMed
Google Scholar
Ichihashi Y, Kawade K, Usami T, Horiguchi G, Takahashi T, Tsukaya H. Key proliferative activity in the junction between the leaf blade and leaf Petiole of Arabidopsis. Plant Physiol. 2011;157:1151–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, Hall HC, et al. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development. 2014;141:4311–9.
Article
CAS
PubMed
Google Scholar
Woerlen N, Allam G, Popescu A, Corrigan L, Pautot V, Hepworth SR. Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root. Planta. 2017;245:1079–90.
Article
CAS
PubMed
Google Scholar
He J, Benedito VA, Wang M, Murray JD, Zhao PX, Tang Y, et al. The Medicago truncatula gene expression atlas web server. BMC Bioinformatics. 2009;10:441.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, et al. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol. 2007;17:678–82.
Article
CAS
Google Scholar
Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, et al. A genetic framework for the control of cell division and differentiation in the root meristem. Science. 2008;322:1380–4.
Article
CAS
Google Scholar
Khan M, Xu M, Murmu J, Tabb P, Liu Y, Storey K, et al. Antagonistic interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture. Plant Physiol. 2012;158:946–60.
Article
CAS
PubMed
Google Scholar
Schuetz M, Smith R, Ellis B. Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot. 2013;64:11–31.
Article
CAS
PubMed
Google Scholar
Lars Hennig, Köhler C. Plant Developmental Biology Methods and Protocols 2010.
Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. A battery of transcription factors involved in the regulation of secondary Cell Wall biosynthesis in Arabidopsis. Plant Cell Online. 2008;20:2763–82.
Article
CAS
Google Scholar
Ohashi-Ito K, Oda Y, Fukuda H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell. 2010;22:3461–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong R, Lee C, Ye Z-H. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant. 2010;3:1087–103.
Article
CAS
PubMed
Google Scholar
Bonke M, Thitamadee S, Mähönen AP, Hauser MT, Helariutta Y. APL regulates vascular tissue identity in Arabidopsis. Nature. 2003;426:181–6.
Article
CAS
PubMed
Google Scholar
Rost TL. The organization of roots of dicotyledonous plants and the positions of control points. Ann Bot. 2011;107:1213–22.
Article
PubMed
Google Scholar
Kong X, Liu G, Liu J, Ding Z. The root transition zone: a hot spot for signal crosstalk. Trends Plant Sci. 2018;23:403–9.
Article
CAS
PubMed
Google Scholar
Campbell L, Turner S. Regulation of vascular cell division. J Exp Bot. 2017;68:27–43.
Article
CAS
PubMed
Google Scholar
Ruonala R, Ko D, Helariutta Y. Genetic networks in plant vascular development. Annu Rev Genet. 2017;51:335–59.
Article
CAS
PubMed
Google Scholar
Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, et al. Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci. 2008;105:20027–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Sánchez Rodríguez F, Wu M-F, et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature. 2019;565:485–9.
Article
CAS
PubMed
Google Scholar
Boivin S, Fonouni-Farde C, Frugier F. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. Front Plant Sci. 2016;7:1–12.
Article
Google Scholar
Gamas P, Brault M, Jardinaud MF, Frugier F. Cytokinins in symbiotic nodulation: when, where, what for? Trends Plant Sci. 2017;22:792–802.
Article
CAS
PubMed
Google Scholar
Kohlen W, Ng JLP, Deinum EE, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. J Exp Bot. 2018;69:229–44.
Article
CAS
PubMed
Google Scholar
Gonzalez-Rizzo S, Crespi M, Frugier F. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell. 2006;18:2680–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nadzieja M, Kelly S, Stougaard J, Reid D. Epidermal auxin biosynthesis facilitates rhizobial infection in Lotus japonicus. Plant J. 2018;95:101–11.
Article
CAS
PubMed
Google Scholar
Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E. A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol Plant-Microbe Interact. 1997;10:307–15.
Article
CAS
Google Scholar
Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, et al. RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot. 2004;55:983–92.
Article
CAS
PubMed
Google Scholar
Fahraeus G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol. 1957;16:374–81.
CAS
PubMed
Google Scholar
Kulikova O, Franken C, Bisseling T. Methods in Molecular Biology. In: In situ hybridization method for localization of mRNA molecules in medicago tissue sections. New York, NY: Humana Press; 2018. p. 145–59.
Google Scholar
Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N, et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun. 2016;7:1–14.
Article
Google Scholar
Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C, Wang X, et al. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature. 2016;534:494–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 2014;77:817–37.
Article
CAS
PubMed
Google Scholar
van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, et al. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc Natl Acad Sci U S A. 2018;115:E4700–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Nguyen MAT, Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95.
Article
CAS
PubMed
PubMed Central
Google Scholar