Wang L, Cui X, Cheng H, et al. A review of soil cadmium contamination in China including a health risk assessment. Environ Sci Pollut R. 2015;22:16441–52.
Article
CAS
Google Scholar
Shamsi IH, Wei K, Zhang GP, Jilani GH, Hassan MJ. Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biol Plantarum. 2008;52:165–9.
Article
CAS
Google Scholar
John MK. Cadmium uptake by eight food crops as influenced by various soil levels of cadmium. Environ Pollut. 1973;4:7–15.
Article
CAS
Google Scholar
Patra M, Bhowmik N, Bandopadhyay B, Sharma A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot. 2004;52:199–223.
Article
CAS
Google Scholar
DalCorso G, Farinati S, Furini A. Regulatory networks of cadmium stress in plants. Plant Signal Behav. 2010;5:663–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montero-Palmero MB, Martin-Barranco A, Escobar C, Hernandez LE. Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress. New Phytol. 2014;201:116–30.
Article
CAS
PubMed
Google Scholar
Grant CA, Clarke JM, Duguid S, Chaney RL. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ. 2008;390:301–10.
Article
CAS
PubMed
Google Scholar
Clemens S, Kim EJ, Neumann D, Schroeder JI. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. 1999;18:3325–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallego SM, Pena LB, Barcia RA, et al. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot. 2012;835:33–46.
Article
CAS
Google Scholar
Hall MJ, Brown MT. Copper and manganese influence the uptake of cadmium in marine macroalgae. B Environ Contam Tox. 2002;68:49–55.
Article
CAS
Google Scholar
Bhaduri AM, Fulekar MH. Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Bio. 2012;11:55–69.
Article
CAS
Google Scholar
Xiang C, Werner BL, Christensen EM, Oliver DJ. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 2001;126:564–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grill E, Löffler S, Winnacker EL, Zenk MH. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase phytochelatin synthase. P Natl Acad Sci USA. 1989;86:6838–42.
Article
CAS
Google Scholar
Lin YF, Aarts MGM. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci. 2012;69:3187–206.
Article
CAS
PubMed
Google Scholar
Cobbett C. Pyhtochelatins and their roles in heavy metal detoxification. Plant Physiol. 2000;123:825–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pence NS, Larsen PB, Ebbs SD, et al. The molecular physiology of heavy metal transport in the Zn/cd hyperaccumulator Thlaspi caerulescens. P Natl Acad Sci USA. 2000;97:4956–60.
Article
CAS
Google Scholar
Noll M, Lutsenko S. Expression of ZntA, a zinc-transporting P1-type ATPase, is specifically regulated by zinc and cadmium. IUBMB Life. 2000;49:297–302.
Article
CAS
PubMed
Google Scholar
Shiraishi E, Inouhe M, Joho M, Tohoyama H. The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene PCA1, controls the intracellular cadmium-level in the yeast S cerevisiae. Curr Genet. 2000;37:79–86.
Article
CAS
PubMed
Google Scholar
Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007;50:207–18.
Article
CAS
PubMed
Google Scholar
Migocka M, Papierniak A, Rajsz A. Cucumber PDR8/ABCG36 and PDR12/ABCG40 plasma membrane proteins and their up-regulation under abiotic stresses. Biol Plantarum. 2017;61:115–26.
Article
CAS
Google Scholar
Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol. 2006;140:922–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao S, Chye ML. Arabidopsis ACBP1 overexpressors are PbII-tolerant and accumulate PbII. Plant Signal Behav. 2008;39:693–4.
Article
Google Scholar
Cao S, Chen Z, Liu G, et al. The Arabidopsis ethylene-insensitive 2 gene is required for lead resistance. Plant Physiol Bioch. 2009;47:308–12.
Article
CAS
Google Scholar
Liu HH, Tian X, Li YJ, Wu CA. Zheng CC microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14:836–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding Y, Chen Z, Zhu C. Microarray-based analysis of cadmium-responsive microRNAs in rice Oryza sativa. J Exp Bot. 2011;62:3563–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang MF, Mao DH, Xu LW, et al. Integrated analysis of miRNA and mRNA expression profiles in response to cd exposure in rice seedlings. BMC Genomics. 2014;15:835.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu YC, Chu LL, Jin QJ, et al. Transcriptome-Wide Identification of miRNAs and Their Targets from Typha angustifolia by RNA-Seq and Their Response to Cadmium Stress. PLoS ONE. 2015;10:e0125462.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou ZS, Huang SQ, Yang ZM. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Bioph Res Co. 2008;374:538–42.
Article
CAS
Google Scholar
Xu L, Wang Y, Zhai LL, et al. Genome-wide identification and characterization of cadmium-responsive micrornas and their target genes in radish (Raphanus sativus l) roots. J Exp Bot. 2013;64:4271–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khraiwesh B, Zhu JK, Zhu JH. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BBA-Gene Regul Mech. 1819;2012:137–48.
Google Scholar
Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV. Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual. 1997;26:1424–30.
Article
CAS
Google Scholar
Clemens S. Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Med Env. 2001;14:235–9.
CAS
Google Scholar
Huang SQ, Xiang AL, Che LL, et al. A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J. 2010;8:887–99.
Article
CAS
PubMed
Google Scholar
Jian H, Yang B, Zhang A, et al. Genome-wide identification of micrornas in response to cadmium stress in oilseed rape (Brassica napus L) using high-throughput sequencing. Int J Mol Sci. 2018;19:1431.
Article
PubMed Central
CAS
Google Scholar
Zhou ZS, Song JB, Yang ZM. Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot. 2012;63:4597–613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer U, Talke IN, Hanikenn M. Transition metal transport. FEBS Lett. 2007;581:2263–72.
Article
PubMed
CAS
Google Scholar
Herouart D, Van Montagu M, Inze D. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. P Natl Acad Sci USA. 1993;90:3108–12.
Article
CAS
Google Scholar
Chu CC, Lee WC, Guo WY, et al. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol. 2005;139:425–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandra R, Kang H. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. For Sci. 2016;12:55–61.
Google Scholar
Hattab S, Dridi B, Chouba L, Ben Kheder M, Bousetta H. Photosynthesis and growth responses of pea Pisum sativum L under heavy metals stress. J Environ Sci. 2009;21:1552–6.
Article
CAS
Google Scholar
Ali B, Wang B, Ali S, et al. 5-aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. Plant Growth Regul. 2013b;32:604–14.
Article
CAS
Google Scholar
Motohashi R, Ito T, Kobayashi M, et al. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a ds-tagged Arabidopsis pale-green mutant. Plant J. 2003;34:719–31.
Article
CAS
PubMed
Google Scholar
Budziszewski GJ, Lewis SP, Glover LW, et al. Arabidopsis genes essential for seedling viability: isolation of insertional mutants and molecular cloning. Genet. 2001;159:1765–78.
CAS
Google Scholar
Izumi M, Tsunoda H, Suzuki Y, et al. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. J Exp Bot. 2012;63:2159–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suorsa M, Sirpiö S, Aro EM. Towards characterization of the chloroplast NAD (P) H dehydrogenase complex. Mol Plant. 2009;2(6):1127–40.
Article
CAS
PubMed
Google Scholar
Sperling U, Van Cleve B, Frick G, Apel K, Armstrong GA. Overexpression of light-dependent pora or porb in plants depleted of endogenous por by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J. 2010;12:649–58.
Article
Google Scholar
Wu FQ, Xin Q, Cao Z, et al. The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis. Plant Physiol. 2009;150:1940–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo JS, Lee KW, Rhee JS, et al Environmental stressors (salinity, heavy metals, H2O2) modulate expression of glutathione reductase (GR) gene from the intertidal copepod tigriopus japonicus. Aquat Toxicol 2006; 80: 0–289.
May MJ, Vernoux T, Leaver C, Van Montague M, Inze D. Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot. 1998;49:649–67.
CAS
Google Scholar
Rauser WE. Phytochelatins and related peptides structure, biosynthesis, and function. Plant Physiol. 1995;109:1141–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howden R, Andersen CR, Goldsbrough PB, Cobbett CS. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol. 1995;107:1067–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herbette S, Taconnat L, Hugouvieux V, et al. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie. 2006;88:1751–65.
Article
CAS
PubMed
Google Scholar
Sarry JE, Kuhn L, Ducruix C, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell. 2012;24:2155–67.
Article
CAS
Google Scholar
May M, Vernoux T, Sánchez-Fernández R, Van Montagu M, Inzé D. Evidence for posttranscriptional activation of gamma-glutamylcysteine synthetase during plant stress responses. P Natl Acad Sci USA. 1998a;95:12049–54.
Article
CAS
Google Scholar
Adamis PDB, Gomes DS, Pinto MLCC, Panek AD, Eleutherio EA. The role of glutathione transferases in cadmium stress. Toxicol Lett. 2004;154:81–8.
Article
CAS
PubMed
Google Scholar
Moons A. Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots 1. FEBS Lett. 2003;553:427–32.
Article
CAS
PubMed
Google Scholar
Romero-Puertas M, Rodriguez-serrano M, Corpas F, Gomez M, Del Rio L. Cadmium-induced subcellular accumulation of O2- and H2O2 in pea leaves. Plant Cell Environ. 2004;27:1122–34.
Article
CAS
Google Scholar
Taylor NL, Millar AH. Oxidative stress and plant mitochondria. Methods Mol Biol. 2007;372:389–403.
Article
CAS
PubMed
Google Scholar
Khanna-Chopra R. Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma. 2012;249:469–81.
Article
CAS
PubMed
Google Scholar
Livanos P, Galatis B, Apostolakos P. The interplay between ROS and tubulin cytoskeleton in plants. Plant Signal Behav. 2014;9:e28069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreres F, Figueiredo R, Bettencourt S, et al. Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J Exp Bot. 2011;62:2841–54.
Article
CAS
PubMed
Google Scholar
Bernard F, Dumez S, Brulle F, et al. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to cd and/or Pb. Environ Sci Pollut R. 2016;23:3136–51.
Article
CAS
Google Scholar
Hasanuzzaman M, Nahar K, Anee TI, Fujita M. Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci. 2017;8:1061.
Article
PubMed
PubMed Central
Google Scholar
Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A. Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Bioch. 2002;40:977–82.
Article
CAS
Google Scholar
Chen J, Yang L, Yan X, et al. Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol. 2016;171:707–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, Chen C, Du J, et al. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol. 2012;158:790–800.
Article
CAS
PubMed
Google Scholar
Xu Z, Liu X, He X, et al. The soybean basic helix-loop-helix transcription factor ORG3-Like enhances cadmium tolerance via increased iron and reduced cadmium uptake and transport from roots to shoots. Front Plant Sci. 2017;8:1098.
Article
PubMed
PubMed Central
Google Scholar
Guan C, Ji J, Li X, Jin C, Wang G. LcMKK, a MAPK kinase fromLycium chinense, confers cadmium tolerance in transgenic tobacco by transcriptional upregulation of ethylene responsive transcription factor gene. J Genet. 2016;95:875–85.
Article
CAS
PubMed
Google Scholar
Li M, Hao P, Cao F. Glutathione-induced alleviation of cadmium toxicity in Zea mays. Plant Physiol Biochem. 2017;119:240–9.
Article
CAS
PubMed
Google Scholar
Xu Z, Ge Y, Zhang W, Zhao Y, Yang G. The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC Plant Biol. 2018;18:19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yuan J, Bai Y, Chao Y, et al. Genome-wide analysis reveals four key transcription factors associated with cadmium stress in creeping bentgrass (Agrostis stolonifera L). Peerj. 2018;6:e5191.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin XL, Jiang L, Song NH, Yang H. Toxic reactivity of wheat Triticum aestivum plants to herbicide isoproturon. J Agr Food Chem. 2008;56:48254831.
Google Scholar
Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinform. 2009;25:1966–7.
Article
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology KO as a controlled vocabulary. Bioinform. 2005;21:3787–93.
Article
CAS
Google Scholar